Data Mining and Model-Predictive Approach for Blast Furnace Thermal Control

被引:0
|
作者
Shnayder, D. A. [1 ]
Barbasova, T. A. [1 ]
Kazarinov, L. S. [1 ]
Lipatnikov, A., V [1 ]
机构
[1] South Ural State Univ, Automat & Control Dept, Chelyabinsk, Russia
来源
PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) | 2017年
关键词
Blast furnace process; clustering; model-predictive control; self-organizing Kohonen networks; real-time control; effective regimes; SELF-ORGANIZING MAPS; MULTIOBJECTIVE OPTIMIZATION; IRON; IRONMAKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research proposes a method of blast furnace control based on criteria of increased productivity and lowers coke consumption. The method employs model-predictive control technology. Herewith constructing the model of the blast furnace process involves real-time operating regime data. Model-building assumes two approaches for clustering of operating parameters values using criteria of blast furnace efficiency. The first one uses elliptic surfaces. The second employs self-organizing Kohonen networks. Moreover when having the lack of informative measurements data the solution of the first task is used to normalize the solution of the second task. The research sets and solves the problem of real-time optimization of the blast furnace regime parameters.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 50 条
  • [21] Practical Operation Guidance on Thermal Control of Blast Furnace
    Hashimoto, Yoshinari
    Okamoto, Yuki
    Kaise, Tatsuya
    Sawa, Yoshitaka
    Kano, Manabu
    ISIJ INTERNATIONAL, 2019, 59 (09) : 1573 - 1581
  • [22] Mathematical model for predictive control of the bell-less top charging system of a blast furnace
    Radhakrishnan, VR
    Ram, KM
    JOURNAL OF PROCESS CONTROL, 2001, 11 (05) : 565 - 586
  • [23] Integrated Control and Optimization for Grid-Connected Photovoltaic Systems: A Model-Predictive and PSO Approach
    Boubii, Chaymae
    El Kafazi, Ismail
    Bannari, Rachid
    El Bhiri, Brahim
    Mobayen, Saleh
    Zhilenkov, Anton
    Bossoufi, Badre
    ENERGIES, 2023, 16 (21)
  • [24] Corrective Model-Predictive Control in Large Electric Power Systems
    Martin, Jonathon A.
    Hiskens, Ian A.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (02) : 1651 - 1662
  • [25] Model-Predictive Control of a Two-Switch Forward Converter
    Prakash, Shiv
    Singh, Rangoli
    Ghosh, Sandip
    2024 28TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, MMAR 2024, 2024, : 393 - 398
  • [26] Optimized continuous pharmaceutical manufacturing via model-predictive control
    Rehrl, Jakob
    Kruisz, Julia
    Sacher, Stephan
    Khinast, Johannes
    Horn, Martin
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2016, 510 (01) : 100 - 115
  • [27] MODEL-PREDICTIVE CONTROL-BASED ON NEURAL IDENTIFICATION METHOD
    SUGISAKA, M
    INO, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (9-10) : 83 - 93
  • [28] Robust model-predictive thermal control of lithium-ion batteries under drive cycle uncertainty
    Bhavsar, S.
    Kant, K.
    Pitchumani, R.
    JOURNAL OF POWER SOURCES, 2023, 557
  • [29] Model Predictive Control of the Exit Part Temperature for an Austenitization Furnace
    Ganesh, Hari S.
    Edgar, Thomas F.
    Baldea, Michael
    PROCESSES, 2016, 4 (04):
  • [30] An experimental study of two predictive reinforcement learning methods and comparison with model-predictive control
    Dobriborsci, Dmitrii
    Osinenko, Pavel
    Aumer, Wolfgang
    IFAC PAPERSONLINE, 2022, 55 (10): : 1545 - 1550