Modelling neuroanatomical variation during childhood and adolescence with neighbourhood-preserving embedding

被引:18
作者
Ball, Gareth [1 ]
Adamson, Chris [1 ]
Beare, Richard [1 ]
Seal, Marc L. [1 ,2 ]
机构
[1] Royal Childrens Hosp, Murdoch Childrens Res Inst, Dev Imaging, Melbourne, Vic, Australia
[2] Univ Melbourne, Dept Paediat, Melbourne, Vic, Australia
关键词
SURFACE-BASED ANALYSIS; PREDICTING BRAIN-AGE; SEX-DIFFERENCES; CORTICAL THICKNESS; CEREBRAL-CORTEX; KERNEL METHODS; SEGMENTATION; TRAJECTORIES; MATURATION; PATTERNS;
D O I
10.1038/s41598-017-18253-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Brain development is a dynamic process with tissue-specific alterations that reflect complex and ongoing biological processes taking place during childhood and adolescence. Accurate identification and modelling of these anatomical processes in vivo with MRI may provide clinically useful imaging markers of individual variability in development. In this study, we use manifold learning to build a model of age-and sex-related anatomical variation using multiple magnetic resonance imaging metrics. Using publicly available data from a large paediatric cohort (n = 768), we apply a multi-metric machine learning approach combining measures of tissue volume, cortical area and cortical thickness into a lowdimensional data representation. We find that neuroanatomical variation due to age and sex can be captured by two orthogonal patterns of brain development and we use this model to simultaneously predict age with a mean error of 1.5-1.6 years and sex with an accuracy of 81%. We validate this model in an independent developmental cohort. We present a framework for modelling anatomical development during childhood using manifold embedding. This model accurately predicts age and sex based on image-derived markers of cerebral morphology and generalises well to independent populations.
引用
收藏
页数:12
相关论文
共 69 条
[1]   The NIH Toolbox Cognition Battery: Results From a Large Normative Developmental Sample (PING) [J].
Akshoomoff, Natacha ;
Newman, Erik ;
Thompson, Wesley K. ;
McCabe, Connor ;
Bloss, Cinnamon S. ;
Chang, Linda ;
Amaral, David G. ;
Casey, B. J. ;
Ernst, Thomas M. ;
Frazier, Jean A. ;
Gruen, Jeffrey R. ;
Kaufmann, Walter E. ;
Kenet, Tal ;
Kennedy, David N. ;
Libiger, Ondrej ;
Mostofsky, Stewart ;
Murray, Sarah S. ;
Sowell, Elizabeth R. ;
Schork, Nicholas ;
Dale, Anders M. ;
Jernigan, Terry L. .
NEUROPSYCHOLOGY, 2014, 28 (01) :1-10
[2]   A Combined Manifold Learning Analysis of Shape and Appearance to Characterize Neonatal Brain Development [J].
Aljabar, P. ;
Wolz, R. ;
Srinivasan, L. ;
Counsell, S. J. ;
Rutherford, M. A. ;
Edwards, A. D. ;
Hajnal, J. V. ;
Rueckert, D. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (12) :2072-2086
[3]   Organizing Principles of Human Cortical Development-Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy [J].
Amlien, Inge K. ;
Fjell, Anders M. ;
Tamnes, Christian K. ;
Grydeland, Hakon ;
Krogsrud, Stine K. ;
Chaplin, Tristan A. ;
Rosa, Marcello G. P. ;
Walhovd, Kristine B. .
CEREBRAL CORTEX, 2016, 26 (01) :257-267
[4]  
[Anonymous], NEUROIMAGE
[5]  
Ashburner J, 1998, HUM BRAIN MAPP, V6, P348, DOI 10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO
[6]  
2-P
[7]   A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood [J].
Aubert-Broche, B. ;
Fonov, V. S. ;
Garcia-Lorenzo, D. ;
Mouiha, A. ;
Guizard, N. ;
Coupe, P. ;
Eskildsen, S. F. ;
Collins, D. L. .
NEUROIMAGE, 2013, 82 :393-402
[8]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[9]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[10]   Sex Matters during Adolescence: Testosterone-Related Cortical Thickness Maturation Differs between Boys and Girls [J].
Bramen, Jennifer E. ;
Hranilovich, Jennifer A. ;
Dahl, Ronald E. ;
Chen, Jessie ;
Rosso, Carly ;
Forbes, Erika E. ;
Dinov, Ivo D. ;
Worthman, Carol M. ;
Sowell, Elizabeth R. .
PLOS ONE, 2012, 7 (03)