Fluctuations in the homogenization of semilinear equations with random potentials

被引:3
作者
Bal, Guillaume [1 ]
Jing, Wenjia [2 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Probability measure in Hilbert spaces; random fields; semilinear elliptic equation; stochastic homogenization; variational problem; CORRECTOR THEORY; ELLIPTIC-EQUATIONS; TRANSPORT;
D O I
10.1080/03605302.2016.1238482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stochastic homogenization and obtain a random fluctuation theory for semilinear elliptic equations with a rapidly varying random potential. To first order, the effective potential is the average potential and the nonlinearity is not affected by the randomness. We then study the limiting distribution of the properly scaled homogenization error (random fluctuations) in the space of square integrable functions, and prove that the limit is a Gaussian distribution characterized by homogenized solution, the Green's function of the linearized equation around the homogenized solution, and by the integral of the correlation function of the random potential. These results enlarge the scope of the framework that we have developed for linear equations to the class of semilinear equations.
引用
收藏
页码:1839 / 1859
页数:21
相关论文
共 23 条
  • [11] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [12] MEAN FIELD AND GAUSSIAN APPROXIMATION FOR PARTIAL-DIFFERENTIAL EQUATIONS WITH RANDOM-COEFFICIENTS
    FIGARI, R
    ORLANDI, E
    PAPANICOLAOU, G
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (05) : 1069 - 1077
  • [13] Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics
    Gloria, A.
    Neukamm, S.
    Otto, F.
    [J]. INVENTIONES MATHEMATICAE, 2015, 199 (02) : 455 - 515
  • [14] Gloria A., PREPRINT
  • [15] SCALING LIMIT OF FLUCTUATIONS IN STOCHASTIC HOMOGENIZATION
    Gu, Yu
    Mourrat, Jean-Christophe
    [J]. MULTISCALE MODELING & SIMULATION, 2016, 14 (01) : 452 - 481
  • [16] Hairer M., 2013, Stoch. Partial Differ. Equ. Anal. Comput, V1, P571, DOI [10.1007/s40072-013-0018-y, DOI 10.1007/S40072-013-0018-Y]
  • [17] LIMITING DISTRIBUTION OF ELLIPTIC HOMOGENIZATION ERROR WITH PERIODIC DIFFUSION AND RANDOM POTENTIAL
    Jing, Wenjia
    [J]. ANALYSIS & PDE, 2016, 9 (01): : 193 - 228
  • [18] KHOSHNEVISAN D, 2002, SPRINGER MG MATH, P3
  • [19] Mourrat J.-C., 2015, PREPRINT
  • [20] CORRELATION STRUCTURE OF THE CORRECTOR IN STOCHASTIC HOMOGENIZATION
    Mourrat, Jean-Christophe
    Otto, Felix
    [J]. ANNALS OF PROBABILITY, 2016, 44 (05) : 3207 - 3233