An implicit finite volume method for the solution of 3D low Mach number viscous flows using a local preconditioning technique

被引:5
作者
Vigneron, D. [1 ]
Vaassen, J. -M. [1 ]
Essers, J. -A. [1 ]
机构
[1] Univ Liege, Inst Mecan & Genie Civil, ASMA Dept, Aerodynam Grp, B-4000 Liege, Belgium
关键词
CFD; low Mach number flows; local preconditioning; finite volume solver; quadratic reconstruction; Newton-Krylov; unstructured meshes; AUSM schemes;
D O I
10.1016/j.cam.2006.04.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a cell-centered high order finite volume scheme for the solution of the three-dimensional (3D) Navier-Stokes equations with low Mach number. The system of non-linear equations is solved by means of a fully implicit pseudo-transient scheme. Each pseudo-time step is solved by a Newton-GMRes procedure. A local preconditioning technique is used to scale the speed of sound and to improve the system condition number for low Mach number and low cell Reynolds number. This preconditioning is applied to the AUSM+up flux vector splitting function. The method is tested on 2D and 3D low Mach number laminar flows. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:610 / 617
页数:8
相关论文
共 16 条
[1]  
Batchelor David., 2000, An Introduction to Fluid Dynamics
[2]   THE APPLICATION OF PRECONDITIONING IN VISCOUS FLOWS [J].
CHOI, YH ;
MERKLE, CL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 105 (02) :207-223
[3]   A numerical method for solving incompressible viscous flow problems (Reprinted from the Journal of Computational Physics, vol 2, pg 12-26, 1997) [J].
Chorin, AJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :118-125
[4]  
Coirier W. J., 1994, THESIS U MICHIGAN
[5]   HIGH-RE SOLUTIONS FOR INCOMPRESSIBLE-FLOW USING THE NAVIER STOKES EQUATIONS AND A MULTIGRID METHOD [J].
GHIA, U ;
GHIA, KN ;
SHIN, CT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 48 (03) :387-411
[6]  
LEPOT I, 2001, P ECCOMAS COMP FLUID
[7]  
Liou M.S., P AIAA COMP FLUID DY
[8]  
Merkle C. L., 1995, COMPUTATIONAL FLUID, P419
[9]   Computation of flows with arbitrary equations of state [J].
Merkle, CL ;
Sullivan, JY ;
Buelow, PEO ;
Venkateswaran, S .
AIAA JOURNAL, 1998, 36 (04) :515-521
[10]  
MORGAN K, 1984, NOTES NUMERICAL FLUI, V9