Quasi-simple Lie groups as multiplication groups of topological loops

被引:3
作者
Figula, Agota [1 ]
机构
[1] Debrecen Univ Med, Inst Math, H-4010 Debrecen, Hungary
关键词
Multiplication group of topological loops; topological transformation groups; sections in Lie groups; quasi-simple Lie groups;
D O I
10.1515/advgeom-2015-0011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove thatamong the quasi-simple Lie groups only the group SL4 (R) occurs as the multiplication group of 3-dimensional connected topological loops L. These loops L are homeomorphic to the sphere S-3. Moreover, there does not exist any connected topological loop having an at most 8-dimensional quasi-simple Lie groups as its multiplication group.
引用
收藏
页码:315 / 331
页数:17
相关论文
共 24 条
[1]   ON THE NON-EXISTENCE OF ELEMENTS OF HOPF INVARIANT ONE [J].
ADAMS, JF .
ANNALS OF MATHEMATICS, 1960, 72 (01) :20-109
[2]   Quasigroups. I [J].
Albert, A. A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :507-519
[3]  
ASOH T, 1987, OSAKA J MATH, V24, P271
[4]   COMPLEX HYPERBOLIC PLANE [J].
BETTEN, D .
MATHEMATISCHE ZEITSCHRIFT, 1973, 132 (03) :249-259
[5]  
Bruck R. H., 1958, SURVEY BINARY SYSTEM
[6]   SUBGROUPS OF NONCOMPACT REAL EXCEPTIONAL LIE GROUP F]-4 [J].
CHEN, SS .
MATHEMATISCHE ANNALEN, 1973, 204 (04) :271-284
[7]   ALTERNATING GROUPS AND LATIN SQUARES [J].
DRAPAL, A ;
KEPKA, T .
EUROPEAN JOURNAL OF COMBINATORICS, 1989, 10 (02) :175-180
[8]  
Falcone G., 2013, PREPRINT
[10]  
Figula A, 2011, J LIE THEORY, V21, P385