Fluorescence nanoscopy in cell biology

被引:687
作者
Sahl, Steffen J. [1 ]
Hell, Stefan W. [1 ,2 ,3 ]
Jakobs, Stefan [1 ,4 ]
机构
[1] Max Planck Inst Biophys Chem, Dept NanoBiophoton, Fassberg 11, D-37077 Gottingen, Germany
[2] Max Planck Inst Med Res, Dept Opt Nanoscopy, Jahnstr 29, D-69120 Heidelberg, Germany
[3] German Canc Res Ctr, BioQuant, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[4] Univ Gottingen, Med Fac, Dept Neurol, Robert Koch Str 40, D-37075 Gottingen, Germany
关键词
SUPERRESOLUTION MICROSCOPY REVEALS; SUBCORTICAL CYTOSKELETON PERIODICITY; SINGLE-MOLECULE TRACKING; FIELD OPTICAL NANOSCOPY; GROUND-STATE-DEPLETION; LIVE-CELL; STED NANOSCOPY; LOCALIZATION MICROSCOPY; DIFFRACTION-LIMIT; PLASMA-MEMBRANE;
D O I
10.1038/nrm.2017.71
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Fluorescence nanoscopy uniquely combines minimally invasive optical access to the internal nanoscale structure and dynamics of cells and tissues with molecular detection specificity. While the basic physical principles of 'super-resolution' imaging were discovered in the 1990s, with initial experimental demonstrations following in 2000, the broad application of super-resolution imaging to address cell-biological questions has only more recently emerged. Nanoscopy approaches have begun to facilitate discoveries in cell biology and to add new knowledge. One current direction for method improvement is the ambition to quantitatively account for each molecule under investigation and assess true molecular colocalization patterns via multi-colour analyses. In pursuing this goal, the labelling of individual molecules to enable their visualization has emerged as a central challenge. Extending nanoscale imaging into (sliced) tissue and whole-animal contexts is a further goal. In this Review we describe the successes to date and discuss current obstacles and possibilities for further development.
引用
收藏
页码:685 / 701
页数:17
相关论文
共 225 条
  • [1] Abbe E., 1873, Archiv f ur Mikroskopische Anatomie, V9, P413, DOI DOI 10.1007/BF02956173
  • [2] Nanoscopic compartmentalization of membrane protein motion at the axon initial segment
    Albrecht, David
    Winterflood, Christian M.
    Sadeghi, Mohsen
    Tschager, Thomas
    Noe, Frank
    Ewers, Helge
    [J]. JOURNAL OF CELL BIOLOGY, 2016, 215 (01) : 37 - 46
  • [3] Andreoli D, 2015, SCI REP-UK, V5, DOI [10.1038/srep11454, 10.1038/srep10347]
  • [4] Identification of clustering artifacts in photoactivated localization microscopy
    Annibale, Paolo
    Vanni, Stefano
    Scarselli, Marco
    Rothlisberger, Ursula
    Radenovic, Aleksandra
    [J]. NATURE METHODS, 2011, 8 (07) : 527 - 528
  • [5] Coma aberrations in combined two- and three-dimensional STED nanoscopy
    Antonello, Jacopo
    Kromann, Emil B.
    Burke, Daniel
    Bewersdorf, Joerg
    Booth, Martin J.
    [J]. OPTICS LETTERS, 2016, 41 (15) : 3631 - 3634
  • [6] Nanoscale Organization of Mitochondrial Microcompartments Revealed by Combining Tracking and Localization Microscopy
    Appelhans, Timo
    Richter, Christian P.
    Wilkens, Verena
    Hess, Samuel T.
    Piehler, Jacob
    Busch, Karin B.
    [J]. NANO LETTERS, 2012, 12 (02) : 610 - 616
  • [7] Aquino D, 2011, NAT METHODS, V8, P353, DOI [10.1038/NMETH.1583, 10.1038/nmeth.1583]
  • [8] Simultaneous, accurate measurement of the 3D position and orientation of single molecules
    Backlund, Mikael P.
    Lew, Matthew D.
    Backer, Adam S.
    Sahl, Steffen J.
    Grover, Ginni
    Agrawal, Anurag
    Piestun, Rafael
    Moerner, W. E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (47) : 19087 - 19092
  • [9] Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
    Balzarotti, Francisco
    Eilers, Yvan
    Gwosch, Klaus C.
    Gynna, Arvid H.
    Westphal, Volker
    Stefani, Fernando D.
    Elf, Johan
    Hell, Stefan W.
    [J]. SCIENCE, 2017, 355 (6325) : 606 - 612
  • [10] Bar J., 2016, PERIODIC F ACTIN STR, V6, P37136