Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori

被引:21
作者
Kocic, S [1 ]
机构
[1] Univ Texas, Dept Phys, Austin, TX 78712 USA
关键词
D O I
10.1088/0951-7715/18/6/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a rigorous renormalization scheme for two-degree-of-freedom analytic Hamiltonians associated with Diophantine frequency vectors. We prove the existence of an attracting, integrable limit set of the renormalization. As an application of this renormalization scheme, we give a proof of a KAM theorem. We construct analytic invariant tori with Diophantine frequency vectors for near-integrable Hamiltonians in the domain of attraction of this limit set.
引用
收藏
页码:2513 / 2544
页数:32
相关论文
共 39 条
[1]  
[Anonymous], 2001, P S PURE MATH
[2]  
[Anonymous], 1966, Physics Physique Fizika, DOI DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.2.263
[3]  
[Anonymous], MATH PHYS ELECT J
[4]  
Arnold VI, 1963, USP MAT NAUK, V18, P113
[5]   KAM theorem and quantum field theory [J].
Bricmont, J ;
Gawedzki, K ;
Kupiainen, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :699-727
[6]   Renormalization-group analysis for the transition to chaos in Hamiltonian systems [J].
Chandre, C ;
Jauslin, HR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 365 (01) :1-64
[7]   Scaling law for the critical function of an approximate renormalization [J].
Chandre, C ;
Moussa, P .
NONLINEARITY, 2001, 14 (04) :803-816
[8]  
Coullet P., 1978, J PHYSIQUE C, V39, P25
[9]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284
[10]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386