Smoluchowski diffusion equation for active Brownian swimmers

被引:48
|
作者
Sevilla, Francisco J. [1 ]
Sandoval, Mario [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Phys, Mexico City 09340, DF, Mexico
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 05期
关键词
MOTILITY; MODEL; SUSPENSIONS; PARTICLES; DYNAMICS; DRIVEN; MOTION;
D O I
10.1103/PhysRevE.91.052150
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the free diffusion in two dimensions of active Brownian swimmers subject to passive fluctuations on the translational motion and to active fluctuations on the rotational one. The Smoluchowski equation is derived from a Langevin-like model of active swimmers and analytically solved in the long-time regime for arbitrary values of the Peclet number; this allows us to analyze the out-of-equilibrium evolution of the positions distribution of active particles at all time regimes. Explicit expressions for the mean-square displacement and for the kurtosis of the probability distribution function are presented and the effects of persistence discussed. We show through Brownian dynamics simulations that our prescription for the mean-square displacement gives the exact time dependence at all times. The departure of the probability distribution from a Gaussian, measured by the kurtosis, is also analyzed both analytically and computationally. We find that for the inverse of Peclet numbers less than or similar to 0.1, the distance from Gaussian increases as similar to t(-2) at short times, while it diminishes as similar to t(-1) in the asymptotic limit.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion
    Schmitt, M.
    Stark, H.
    EUROPEAN PHYSICAL JOURNAL E, 2016, 39 (08)
  • [42] Porous Media Microstructure Determines the Diffusion of Active Matter: Experiments and Simulations
    Modica, Kevin J.
    Xi, Yuchen
    Takatori, Sho C.
    FRONTIERS IN PHYSICS, 2022, 10
  • [43] Recovery of mechanical pressure in a gas of underdamped active dumbbells with Brownian noise
    Joyeux, Marc
    PHYSICAL REVIEW E, 2017, 95 (05)
  • [44] CONVERGENCE OF THE CELL AVERAGE TECHNIQUE FOR SMOLUCHOWSKI COAGULATION EQUATION
    Giri, Ankik Kumar
    Nagar, Atulya K.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 349 - 372
  • [45] Motility-induced phase separation of soft active Brownian particles
    Torres-Carbajal, Alexis
    Sevilla, Francisco J.
    PHYSICS OF FLUIDS, 2024, 36 (02)
  • [46] Brownian diffusion of fibers
    Tian, Lin
    Ahmadi, Goodarz
    Tu, Jiyuan
    AEROSOL SCIENCE AND TECHNOLOGY, 2016, 50 (05) : 474 - 486
  • [47] Diffusion mechanism of non-interacting Brownian particles through a deformed substrate
    Arfa, Lahcen
    Ouahmane, Mehdi
    El Arroum, Lahcen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 492 : 781 - 789
  • [48] A fast numerical method for the Cauchy problem for the Smoluchowski equation
    Matveev, S. A.
    Smirnov, A. P.
    Tyrtyshnikov, E. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 282 : 23 - 32
  • [49] Thermophoresis and the Brownian diffusion of nanoparticles in a flow reactor
    Fisenko, S. P.
    Khodyko, Yu A.
    TECHNICAL PHYSICS, 2012, 57 (03) : 336 - 343
  • [50] Relating Brownian motion to diffusion with superparamagnetic colloids
    Darras, A.
    Fiscina, J.
    Vandewalle, N.
    Lumay, G.
    AMERICAN JOURNAL OF PHYSICS, 2017, 85 (04) : 265 - 270