Porous Co3O4@CoO composite nanosheets as improved anodes for lithium-ion batteries

被引:76
作者
Liu, Yanguo [1 ,2 ]
Zhang, Hongzhi [1 ]
Jiang, Nan [1 ]
Zhang, Wanxing [1 ]
Arandiyan, Hamidreza [3 ]
Wang, Zhiyuan [1 ,2 ]
Luo, Shaohua [1 ,2 ]
Fang, Fang [4 ]
Sun, Hongyu [1 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Hebei, Peoples R China
[2] Key Lab Dielect & Electrolyte Funct Mat Hebei Pro, Qinhuangdao 066004, Hebei, Peoples R China
[3] Univ Sydney, Sch Chem, Lab Adv Catalysis Sustainabil, Sydney, NSW 2006, Australia
[4] Natl New Energy Vehicle Technol Innovat Ctr, Beijing 100176, Peoples R China
基金
中国国家自然科学基金;
关键词
Co3O4; Porous nanosheets; Oxygen vacancies; Interface; Lithium-ion batteries; CO3O4; NANOPARTICLES; STORAGE PROPERTIES; CYCLING STABILITY; RECENT PROGRESS; GRAPHENE OXIDE; PERFORMANCE; NANOCOMPOSITES; CONVERSION; SHELL; NANOSTRUCTURES;
D O I
10.1016/j.jallcom.2020.155030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a facile method to synthesise and modify porous Co3O4 nanosheets. The nanosheets are prepared by hydrothermal reaction and calcination, then reduced with an H-2/Ar mixed gas at 250 degrees C within 1 min. The modification treatment generates oxygen vacancies and Co3O4/CoO interface structure. Electrochemical measurements show that the nanosheets (Co3O4-30) reduced for 30 s have excellent electrochemical performance. After the Co3O4-30 electrode was cycled 200 times under 0.5 Ag-1, the reversible capacity was 892 mAh g(-1). A reversible capacity of 250 mAh g -1 can be achieved even at a higher current density of 5.0 Ag-1. The good lithium storage performance is attributed to oxygen vacancies and appropriate Co3O4/CoO interface structure. This study provides a facile strategy to construct improved transition metal oxide electrodes for energy storage and conversion. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Carbon shelled porous SnO2-δ nanosheet arrays as advanced anodes for lithium-ion batteries
    Jia, Rong
    Yue, Jili
    Xia, Qiuying
    Xu, Jing
    Zhu, Xiaohui
    Sun, Shuo
    Zhai, Teng
    Xia, Hui
    ENERGY STORAGE MATERIALS, 2018, 13 : 303 - 311
  • [42] Extreme Rate Capability Cycling of Porous Silicon Composite Anodes for Lithium-Ion Batteries
    Dhanabalan, Abirami
    Song, Botao Farren
    Biswal, Sibani Lisa
    CHEMELECTROCHEM, 2021, 8 (17) : 3318 - 3325
  • [43] Electrochemical Performance of Co3O4 Nanofibers As Anode Material for Lithium-Ion Batteries
    Dai, Jianfeng
    Zhu, Xiaojun
    Liu, Jifei
    Wang, Qing
    Li, Weixue
    Qi, Yufeng
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 93 (10) : 2067 - 2071
  • [44] Nitrogen-Doped Porous Co3O4/Graphene Nanocomposite for Advanced Lithium-Ion Batteries
    Zeng, Huihui
    Xing, Baolin
    Chen, Lunjian
    Yi, Guiyun
    Huang, Guangxu
    Yuan, Ruifu
    Zhang, Chuanxiang
    Cao, Yijun
    Chen, Zhengfei
    NANOMATERIALS, 2019, 9 (09)
  • [45] Porous Ni0.14Mn0.86O1.43 hollow microspheres as high-performing anodes for lithium-ion batteries
    Ma, Zhong
    Yuan, Xianxia
    Li, Lin
    Ma, Zi-Feng
    Zhang, Lei
    Mai, Liqiang
    Zhang, Jiujun
    JOURNAL OF POWER SOURCES, 2015, 291 : 156 - 162
  • [46] Enhanced Electrochemical Properties of γ-MnS@rGO Composite as Anodes for Lithium-Ion Batteries
    Nam, Wonbin
    Seong, Honggyu
    Moon, Joon Ha
    Jin, Youngho
    Kim, Geongil
    Yoo, Hyerin
    Jung, Taejung
    Yang, MinHo
    Cho, Se Youn
    Choi, Jaewon
    BATTERIES & SUPERCAPS, 2023, 6 (11)
  • [47] A novel hollow Co3O4@N-doped carbon nanobubble film composite for high-performance anode of lithium-ion batteries
    Chen, Kaixiang
    Huang, Run
    Gu, Fengling
    Du, Yan
    Song, Yonghai
    COMPOSITES PART B-ENGINEERING, 2021, 224
  • [48] Fe2O3-Ag Porous Film Anodes for Ultrahigh-Rate Lithium-Ion Batteries
    Zhang, Dan
    Li, Yong
    Yan, Mi
    Jiang, Yinzhu
    CHEMELECTROCHEM, 2014, 1 (07): : 1155 - 1160
  • [49] Carbon-encapsulated Si nanoparticle composite nanofibers with porous structure as lithium-ion battery anodes
    Li, Xiaojing
    Lei, Gangtie
    Li, Zhaohui
    Zhang, Yan
    Xiao, Qizhen
    SOLID STATE IONICS, 2014, 261 : 111 - 116
  • [50] Ultrathin CoOOH/Co(OH)2 hybrid nanosheets for high-performance anodes of lithium-ion batteries
    Hu, Jinlong
    Song, Jian
    Lan, Donghui
    Tian, Qinghua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 935