Improved Hybrid Bag-Boost Ensemble With K-Means-SMOTE-ENN Technique for Handling Noisy Class Imbalanced Data

被引:37
作者
Puri, Arjun [1 ]
Gupta, Manoj Kumar [1 ]
机构
[1] Shri Mata Vaishno Devi Univ, Sch Comp Sci & Engn, Katra 182320, Jammu & Kashmir, India
关键词
class imbalance; noisy imbalanced datasets; ensemble techniques; hybrid bag-boost technique; SAMPLING METHOD; CLASSIFICATION; PREDICTION; OVERLAP;
D O I
10.1093/comjnl/bxab039
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A class imbalance problem plays a vital role while dealing with classes with rare number of instances. Noisy class imbalanced datasets create considerable effect on the machine learning classification of classes. Data resampling techniques commonly used for handling class imbalance problem show insignificant behavior in noisy imbalanced datasets. To cure curse of data resampling technique in noisy class imbalanced data, we have proposed improved hybrid bag-boost with proposed resampling technique model. This model contains proposed resampling technique used for handling noisy imbalanced datasets. Proposed resampling technique comprises K-Means SMOTE (Synthetic Minority Oversampling TEchnique) as an oversampling technique and edited nearest neighbor (ENN) undersampling technique used as noise removal. This resampling technique is used to mitigate noise in imbalanced datasets at three levels, i.e. first clusters datasets using K-Means clustering technique, SMOTE inside clusters for handling imbalance by inducing synthetic instances of class in minority and lastly, using ENN technique to remove instances that create noise afterwards. Experiments were performed using 11 binary imbalanced datasets by varying attribute noise percentages, and by using area under receiver operating curve as performance metrics. Experimental results confirmed that proposed model shows better results than the rest. Moreover, it is also confirmed that proposed technique performs better with an increased noise percentage in binary imbalanced datasets.
引用
收藏
页码:124 / 138
页数:15
相关论文
共 50 条
[1]   A hybrid method to face class overlap and class imbalance on neural networks and multi-class scenarios [J].
Alejo, R. ;
Valdovinos, R. M. ;
Garcia, V. ;
Pacheco-Sanchez, J. H. .
PATTERN RECOGNITION LETTERS, 2013, 34 (04) :380-388
[2]  
Alejo R., 2010, INT S NEURAL NETW, V303
[3]  
[Anonymous], 2015, J. Big Data
[4]  
Batista G.E.A.P.A., 2004, ACM SIGKDD Explor. Newsl, V6, P20, DOI [DOI 10.1145/1007730.1007735, 10.1145/1007730.1007735]
[5]   Imbalanced Data Classification: A Novel Re-sampling Approach Combining Versatile Improved SMOTE and Rough Sets [J].
Borowska, Katarzyna ;
Stepaniuk, Jaroslaw .
COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2016, 2016, 9842 :31-42
[6]  
Breiman L, 1996, MACH LEARN, V24, P49
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   An experimental comparison of classification algorithms for imbalanced credit scoring data sets [J].
Brown, Iain ;
Mues, Christophe .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) :3446-3453
[10]   DBSMOTE: Density-Based Synthetic Minority Over-sampling TEchnique [J].
Bunkhumpornpat, Chumphol ;
Sinapiromsaran, Krung ;
Lursinsap, Chidchanok .
APPLIED INTELLIGENCE, 2012, 36 (03) :664-684