A generator of high-order embedded P-stable methods for the numerical solution of the Schrodinger equation

被引:51
作者
Avdelas, G [1 ]
Simos, TE [1 ]
机构
[1] TECH UNIV CRETE, LAB APPL MATH & COMP, HANIA 73100, GREECE
关键词
Schrodinger equation; P-stability; error control; phase shift problem; resonance problem;
D O I
10.1016/0377-0427(96)00005-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generator of new embedded P-stable methods of order 2n+2, where n is the number of layers used by the embedded methods, for the approximate numerical integration of the one-dimensional Schrodinger equation is developed in this paper. These new methods are called embedded methods because of a simple natural error control mechanism. Numerical results obtained for one-dimensional differential equations of the Schrodinger type show the validity of the developed theory.
引用
收藏
页码:345 / 358
页数:14
相关论文
共 46 条
[1]  
Allison A. C., 1970, Journal of Computational Physics, V6, P378, DOI 10.1016/0021-9991(70)90037-9
[2]  
ALLISON AC, 1967, THESIS GLASGOW U GLA
[3]  
AVDELAS G, 1995, 31995 TU CRETE APPL
[4]   THERMAL SCATTERING OF ATOMS BY HOMONUCLEAR DIATOMIC MOLECULES [J].
BERNSTEIN, RB ;
DALGARNO, A ;
MASSEY, H ;
PERCIVAL, IC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1963, 274 (1356) :427-+
[6]  
Blatt J M, 1967, J COMP PHYSIOL, V1, P382, DOI [10.1016/0021-9991(67)90046-0, DOI 10.1016/0021-9991(67)90046-0]
[7]   A ONE-STEP METHOD FOR DIRECT INTEGRATION OF STRUCTURAL DYNAMIC EQUATIONS [J].
BRUSA, L ;
NIGRO, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (05) :685-699
[8]   A 6TH-ORDER EXPONENTIALLY FITTED METHOD FOR THE NUMERICAL-SOLUTION OF THE RADIAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD ;
SIMOS, TE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 91 (02) :413-423
[9]   A HIGH-ORDER METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 33 (04) :299-304
[10]  
Cooley JW., 1961, MATH COMPUT, V15, P363