Edge stability and edge quantum criticality in two-dimensional interacting topological insulators

被引:7
作者
Li, Zi-Xiang [1 ]
Yao, Hong [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
关键词
VALENCE-BOND STATE; MONTE-CARLO; SIGN-PROBLEM; SIMULATION; SOLITONS; MODEL;
D O I
10.1103/PhysRevB.96.241101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The robustness of helical edge states in two-dimensional (2D) topological insulators (TIs) against strong interactions remains an intriguing issue. Here, by performing a sign-free quantum Monte Carlo (QMC) simulation of the Kane-Mele-Hubbard-Rashba model which describes an interacting 2D TI with two-particle backscattering on the edges, we verify that the gapless helical edge states are robust against a finite range of two-particle backscattering when the Coulomb repulsion is not strong. However, when the Coulomb repulsion is strong enough, the helical edge states can be gapped by infinitesimal two-particle backscattering, resulting in an edge magnetic order. We further reveal the universal properties of the magnetic edge quantum critical point (EQCP). At magnetic domain walls on edges, we find that a fractionalized charge of e/2 emerges. Implications of our results to recent transport experiments in an InAs/GaSb quantum well, which is a 2D TI with strong interactions, will also be discussed.
引用
收藏
页数:7
相关论文
共 97 条
[1]   Edge state reconstruction from strong correlations in quantum spin Hall insulators [J].
Amaricci, A. ;
Privitera, L. ;
Petocchi, F. ;
Capone, M. ;
Sangiovanni, G. ;
Trauzettel, B. .
PHYSICAL REVIEW B, 2017, 95 (20)
[2]   First-Order Character and Observable Signatures of Topological Quantum Phase Transitions [J].
Amaricci, A. ;
Budich, J. C. ;
Capone, M. ;
Trauzettel, B. ;
Sangiovanni, G. .
PHYSICAL REVIEW LETTERS, 2015, 114 (18)
[3]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[4]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[5]   World-line and determinantal quantum Monte Carlo methods for spins, phonons and electrons [J].
Assaad, F. F. ;
Evertz, H. G. .
COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 :277-+
[6]   Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice [J].
Bercx, Martin ;
Hofmann, Johannes S. ;
Assaad, Fakher F. ;
Lang, Thomas C. .
PHYSICAL REVIEW B, 2017, 95 (03)
[7]   Sign-Problem-Free Quantum Monte Carlo of the Onset of Antiferromagnetism in Metals [J].
Berg, Erez ;
Metlitski, Max A. ;
Sachdev, Subir .
SCIENCE, 2012, 338 (6114) :1606-1609
[8]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[9]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[10]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286