Estimating the Aboveground Biomass of Urban Trees by Combining Optical and Lidar Data: A Case Study of Hengqin, Zhuhai, China

被引:3
作者
Bai, Linze [1 ]
Cheng, Qimin [2 ]
Shu, Yuxuan [3 ]
Zhang, Sihang [1 ]
机构
[1] State Key Lab Surveying Mapping & Remote Sensing, Wuhan 430079, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430079, Peoples R China
[3] Imperial Coll Sci Technol & Med, London SW7 2AZ, England
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
RANDOM FOREST; AIRBORNE LIDAR; CARBON STORAGE; ENVIRONMENT; SENTINEL-2; PREDICTION; REGRESSION; INVENTORY; PATTERNS; QUANTIFY;
D O I
10.14358/PERS.21-00045R2
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The aboveground biomass (AGB) of trees plays an important role in the urban ecological environment. Unlike forest biomass estimation. the estimation of AGB of urban trees is greatly influenced by human activities and has strong spatial heterogeneity: In this study, taking Hengqin, China, as an example, we extract the tree area accurately and design a collaborative scheme of optical and lidar data. Finally, five evaluation models are used, including two deep learning models (deep belief network and stacked sparse autoencoder). two machine learning models (random forest and support vector regression), and a geographically weighted regression model. The experimental results show that the deep learning model is effective. The result of the stacked sparse autoencoder, which is the best model, is that R-2 = 0.768 and root mean square error = 18.17 mg/ha. The results show that our method can be applied to estimate the AGB of urban trees, which greatly influences urban ecological construction.
引用
收藏
页码:121 / 128
页数:8
相关论文
共 46 条
[1]   Estimating above-ground biomass of subtropical forest using airborne LiDAR in Hong Kong [J].
Chan, Evian Pui Yan ;
Fung, Tung ;
Wong, Frankie Kwan Kit .
SCIENTIFIC REPORTS, 2021, 11 (01)
[2]   Improved allometric models to estimate the aboveground biomass of tropical trees [J].
Chave, Jerome ;
Rejou-Mechain, Maxime ;
Burquez, Alberto ;
Chidumayo, Emmanuel ;
Colgan, Matthew S. ;
Delitti, Welington B. C. ;
Duque, Alvaro ;
Eid, Tron ;
Fearnside, Philip M. ;
Goodman, Rosa C. ;
Henry, Matieu ;
Martinez-Yrizar, Angelina ;
Mugasha, Wilson A. ;
Muller-Landau, Helene C. ;
Mencuccini, Maurizio ;
Nelson, Bruce W. ;
Ngomanda, Alfred ;
Nogueira, Euler M. ;
Ortiz-Malavassi, Edgar ;
Pelissier, Raphael ;
Ploton, Pierre ;
Ryan, Casey M. ;
Saldarriaga, Juan G. ;
Vieilledent, Ghislain .
GLOBAL CHANGE BIOLOGY, 2014, 20 (10) :3177-3190
[3]   Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network [J].
Chen, Bangqian ;
Wu, Zhixiang ;
Wang, Jikun ;
Dong, Jinwei ;
Guan, Liming ;
Chen, Junming ;
Yang, Kai ;
Xie, Guishui .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 102 :148-160
[4]   Application of Convolutional Neural Network on Lei Bamboo Above-Ground-Biomass (AGB) Estimation Using Worldview-2 [J].
Dong, Luofan ;
Du, Huaqiang ;
Han, Ning ;
Li, Xuejian ;
Zhu, Di'en ;
Mao, Fangjie ;
Zhang, Meng ;
Zheng, Junlong ;
Liu, Hua ;
Huang, Zihao ;
He, Shaobai .
REMOTE SENSING, 2020, 12 (06)
[5]  
Dong P, 2020, Photogramm. Eng. Remote Sens., V86, P1, DOI [10.14358/PERS.86.1.13, DOI 10.14358/PERS.86.1.13]
[6]   Target Detection Based on Random Forest Metric Learning [J].
Dong, Yanni ;
Du, Bo ;
Zhang, Liangpei .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (04) :1830-1838
[7]   Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas [J].
Dube, Timothy ;
Mutanga, Onisimo .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 108 :12-32
[8]   Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass [J].
Fassnacht, F. E. ;
Hartig, F. ;
Latifi, H. ;
Berger, C. ;
Hernandez, J. ;
Corvalan, P. ;
Koch, B. .
REMOTE SENSING OF ENVIRONMENT, 2014, 154 :102-114
[9]   The impact of urban residential development patterns on forest carbon density: An integration of LiDAR, aerial photography and field mensuration [J].
Godwin, Christopher ;
Chen, Gang ;
Singh, Kunwar K. .
LANDSCAPE AND URBAN PLANNING, 2015, 136 :97-109
[10]   Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms [J].
Golde, Chase E. ;
Rothrock, Michael J., Jr. ;
Mishra, Abhinav .
FOOD RESEARCH INTERNATIONAL, 2019, 122 :47-55