Geometric phase and quantum correlations for a bipartite two-level system

被引:2
作者
Lombardo, Fernando C. [1 ]
Villar, Paula I.
机构
[1] FCEyN UBA, Dept Fis Juan Jose Giambiagi, RA-1428 Buenos Aires, DF, Argentina
来源
7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS | 2015年 / 626卷
关键词
BERRY PHASE; COMPUTATION; STATE;
D O I
10.1088/1742-6596/626/1/012043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the geometric phase of a bipartite two-level system coupled to an external environment. We compute the correction to the unitary geometric phase through a kinematic approach. To this end, we analyse the reduced density matrix of the bipartite system after tracing over the environmental degrees of freedom, for arbitrary initial states of the composite system. In all cases considered, the correction to the unitary phase has a similar structure as a function of the degree of the entanglement of the initial state. In the case of a maximally entangled state (MES), the survival phase is only the topological phase, and there is no correction induced by the environments. Further, we compute the quantum discord and concurrence of the bipartite state and analyse possible relations among these quantities and the geometric phase acquired during the non-unitary system's evolution.
引用
收藏
页数:7
相关论文
共 29 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   Quantum discord for two-qubit X states [J].
Ali, Mazhar ;
Rau, A. R. P. ;
Alber, G. .
PHYSICAL REVIEW A, 2010, 81 (04)
[3]   GEOMETRIC QUANTUM PHASE AND ANGLES [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW D, 1988, 38 (06) :1863-1870
[4]  
[Anonymous], PHYS REV LETT, V95
[5]  
[Anonymous], 2004, PHYS REV LETT, V93
[6]  
[Anonymous], PHYS REV LETT, V92
[7]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[9]   Geometric phase in open systems [J].
Carollo, A ;
Fuentes-Guridi, I ;
Santos, MF ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2003, 90 (16)
[10]  
Chuang I. N., 2000, Quantum Computation and Quantum Information