The Design, Synthesis, and Biological Activities of Pyrrole-Based Carboxamides: The Novel Tubulin Inhibitors Targeting the Colchicine-Binding Site

被引:25
作者
Boichuk, Sergei [1 ,2 ]
Galembikova, Aigul [1 ]
Syuzov, Kirill [1 ]
Dunaev, Pavel [1 ]
Bikinieva, Firuza [1 ]
Aukhadieva, Aida [1 ]
Zykova, Svetlana [3 ]
Igidov, Nazim [3 ]
Gankova, Ksenia [3 ]
Novikova, Maria [4 ]
Kopnin, Pavel [4 ]
机构
[1] Kazan State Med Univ, Dept Pathol, Kazan 420012, Russia
[2] Kazan State Med Univ, Cent Res Lab, Kazan 420012, Russia
[3] Perm State Acad Pharm, Perm 614990, Russia
[4] NN Blokhin Natl Med Res Ctr Oncol, Cytogenet Lab, Carcinogenesis Inst, Moscow 115478, Russia
来源
MOLECULES | 2021年 / 26卷 / 19期
基金
俄罗斯科学基金会;
关键词
microtubules; tubulin depolymerization; cell cycle; mitotic arrest; apoptosis; breast; lung; prostate cancer; paclitaxel; vinblastine; 2-amino pyrroles; TIVANTINIB ARQ 197; ANTITUMOR-ACTIVITY; MOLECULAR DOCKING; STRUCTURAL BASIS; HCA IX; CANCER; TAXOL; RESISTANCE; EXPRESSION; AGENTS;
D O I
10.3390/molecules26195780
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microtubule targeting agents (MTAs) that interfere with the dynamic state of the mitotic spindle are well-known and effective chemotherapeutic agents. These agents interrupt the microtubule network via polymerization or depolymerization, halting the cell cycle progression and leading to apoptosis. We report two novel pyrrole-based carboxamides (CAs) (CA-61 and -84) as the compounds exhibiting potent anti-cancer properties against a broad spectrum of epithelial cancer cell lines, including breast, lung, and prostate cancer. The anti-cancer activity of CAs is due to their ability to interfere with the microtubules network and inhibit tubulin polymerization. Molecular docking demonstrated an efficient binding between these ligands and the colchicine-binding site on the tubulin. CA-61 formed two hydrogen bond interactions with THR 179 (B) and THR 353 (B), whereas two hydrogen bonds with LYS 254 (B) and 1 with ASN 101 (A) were identified for CA-84. The binding energy for CA-84 and CA-61 was -9.910 kcal/mol and -9.390 kcal/mol. A tubulin polymerization assay revealed a strong inhibition of tubulin polymerization induced by CA-61 and -84. The immunofluorescence data revealed the disruption of the tubulin assembly in CA-treated cancer cells. As an outcome of the tubulin inhibition, these compounds halted the cell cycle progression in the G2/M phase, leading to the accumulation of the mitotic cells, and further induced apoptosis. Lastly, the in vivo study indicated that CAs significantly inhibited the HCC1806 breast cancer xenograft tumor growth in a nude mouse model. Collectively, we identified the novel CAs as potent MTAs, inhibiting tubulin polymerization via binding to the colchicine-binding site, disrupting the microtubule network, and exhibiting potent pro-apoptotic activities against the epithelial cancer cell lines both in vitro and in vivo.
引用
收藏
页数:27
相关论文
共 52 条
[31]  
Mechetner E, 1998, CLIN CANCER RES, V4, P389
[32]  
Meng XY, 2011, CURR COMPUT-AID DRUG, V7, P146
[33]  
Mooberry SL, 1999, CANCER RES, V59, P653
[34]   Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole [J].
Mooberry, Susan L. ;
Weiderhold, Kimberly N. ;
Dakshanamurthy, Sivanesan ;
Hamel, Ernest ;
Banner, Edith J. ;
Kharlamova, Anastasia ;
Hempel, Jonathan ;
Gupton, John T. ;
Brown, Milton L. .
MOLECULAR PHARMACOLOGY, 2007, 72 (01) :132-140
[35]   ARQ 197, a Novel and Selective Inhibitor of the Human c-Met Receptor Tyrosine Kinase with Antitumor Activity [J].
Munshi, Neru ;
Jeay, Sebastien ;
Li, Youzhi ;
Chen, Chang-Rung ;
France, Dennis S. ;
Ashwell, Mark A. ;
Hill, Jason ;
Moussa, Magdi M. ;
Leggett, David S. ;
Li, Chiang J. .
MOLECULAR CANCER THERAPEUTICS, 2010, 9 (06) :1544-1553
[36]   Nocodazole is a High-Affinity Ligand for the Cancer-Related Kinases ABL, c-KIT, BRAF, and MEK [J].
Park, Hwangseo ;
Hong, Seunghee ;
Hong, Sungwoo .
CHEMMEDCHEM, 2012, 7 (01) :53-56
[37]   Microtubules and their role in cellular stress in cancer [J].
Parker, Amelia L. ;
Kavallaris, Maria ;
McCarroll, Joshua A. .
FRONTIERS IN ONCOLOGY, 2014, 4
[38]   Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines [J].
Pirol, Seyma Cankara ;
Caliskan, Burcu ;
Durmaz, Irem ;
Atalay, Rengul ;
Banoglu, Erden .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2014, 87 :140-149
[39]   Pironetin Binds Covalently to αCys316 and Perturbs a Major Loop and Helix of α-Tubulin to Inhibit Microtubule Formation [J].
Prota, Andrea E. ;
Setter, Jocelyn ;
Waight, Andrew B. ;
Bargsten, Katja ;
Murga, Juan ;
Fernando Diaz, Jose ;
Steinmetz, Michel O. .
JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (15) :2981-2988
[40]   The Novel Microtubule-Destabilizing Drug BAL27862 Binds to the Colchicine Site of Tubulin with Distinct Effects on Microtubule Organization [J].
Prota, Andrea E. ;
Danel, Franck ;
Bachmann, Felix ;
Bargsten, Katja ;
Buey, Ruben M. ;
Pohlmann, Jens ;
Reinelt, Stefan ;
Lane, Heidi ;
Steinmetz, Michel O. .
JOURNAL OF MOLECULAR BIOLOGY, 2014, 426 (08) :1848-1860