Regularity in time of the time-dependent Maxwell equations

被引:4
作者
Assous, F
Ciarlet, P
机构
[1] CEA, BIII, DPTA, F-91680 Bruyeres Le Chatel, France
[2] ENSTA, UMA, F-75739 Paris 15, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 327卷 / 08期
关键词
D O I
10.1016/S0764-4442(98)80158-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We Study the regularity in time of the solution to the time-dependent Maxwell equations, in the vacuum bounded by a perfect conductor and without charges. First. we recall the results derived from the classical theory when the clo,nain has a Lipschitz boundary. Then, when it is a polyhedron, Lye extend the results to both the regular and singular parts of the electromagnetic field. Last, when it is a polygon, we improve those results concerning the singular part of the field. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:719 / 724
页数:6
相关论文
共 50 条
  • [41] Fully discrete finite element approaches for time-dependent Maxwell's equations
    Ciarlet Jr. P.
    Zou J.
    [J]. Numerische Mathematik, 1999, 82 (2) : 193 - 219
  • [42] Finite element study of time-dependent Maxwell's equations in dispersive media
    Li, Jichun
    Chen, Yitung
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (05) : 1203 - 1221
  • [43] Numerical solution techniques to the time-dependent Maxwell equations for highly scattering media
    Mandel, S
    Menon, S
    Harshawardhan, W
    Su, Q
    Grobe, R
    [J]. PHOTON MIGRATION, OPTICAL COHERENCE TOMOGRAPHY, AND MICROSCOPY, 2001, 4431 : 165 - 168
  • [44] A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations
    Dehghan, Mehdi
    Salehi, Rezvan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 268 : 93 - 110
  • [45] LOCAL REGULARITY OF SOLUTIONS TO TIME-DEPENDENT SCHRODINGER-EQUATIONS WITH SMOOTH POTENTIALS
    SJOGREN, P
    SJOLIN, P
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1991, 16 (01): : 3 - 12
  • [46] Equivalence of time-dependent Schrodinger equations with constant and time-dependent mass
    Schulze-Halberg, A
    [J]. MODERN PHYSICS LETTERS A, 2003, 18 (39) : 2829 - 2835
  • [47] MAXWELL-DIRAC EQUATIONS WITH ZERO MAGNETIC-FIELD AND TIME-DEPENDENT HARTREE EQUATIONS
    CHADAM, JM
    GLASSEY, RT
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (07): : A593 - A593
  • [48] Fast parallel IGA-ADS solver for time-dependent Maxwell's equations
    Los, Marcin
    Wozniak, Maciej
    Pingali, Keshav
    Castillo, Luis Emilio Garcia
    Alvarez-Arramberri, Julen
    Pardo, David
    Paszynski, Maciej
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 151 : 36 - 49
  • [49] Nonconforming Finite Element Approximation of Time-Dependent Maxwell's Equations in Debye Medium
    Shi, Dongyang
    Yao, Changhui
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (05) : 1654 - 1673
  • [50] Regularity for parabolic equations with time dependent growth
    Ok, Jihoon
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 120 : 253 - 293