Regularity in time of the time-dependent Maxwell equations

被引:4
|
作者
Assous, F
Ciarlet, P
机构
[1] CEA, BIII, DPTA, F-91680 Bruyeres Le Chatel, France
[2] ENSTA, UMA, F-75739 Paris 15, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 327卷 / 08期
关键词
D O I
10.1016/S0764-4442(98)80158-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We Study the regularity in time of the solution to the time-dependent Maxwell equations, in the vacuum bounded by a perfect conductor and without charges. First. we recall the results derived from the classical theory when the clo,nain has a Lipschitz boundary. Then, when it is a polyhedron, Lye extend the results to both the regular and singular parts of the electromagnetic field. Last, when it is a polygon, we improve those results concerning the singular part of the field. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:719 / 724
页数:6
相关论文
共 50 条
  • [21] Effective Maxwell Equations from Time-dependent Density Functional Theory
    E, Weinan
    Lu, Jianfeng
    Yang, Xu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (02) : 339 - 368
  • [22] Isogeometric analysis for time-dependent Maxwell's equations in complex media
    Fan, Enyu
    Li, Jichun
    Liu, Yang
    Zhang, Yangpeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 465
  • [23] Effective Maxwell equations from time-dependent density functional theory
    E Weinan
    Jianfeng Lu
    Xu Yang
    Acta Mathematica Sinica, English Series, 2011, 27 : 339 - 368
  • [24] GAUSS-COMPATIBLE GALERKIN SCHEMES FOR TIME-DEPENDENT MAXWELL EQUATIONS
    Pinto, Martin Campos
    Sonnendruecker, Eric
    MATHEMATICS OF COMPUTATION, 2016, 85 (302) : 2651 - 2685
  • [25] APPROXIMATE CLOAKING FOR TIME-DEPENDENT MAXWELL EQUATIONS VIA TRANSFORMATION OPTICS
    Hoai-Minh Nguyen
    Tran, Loc X.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 4142 - 4171
  • [26] New unconditionally stable algorithms to solve the time-dependent Maxwell equations
    Kole, JS
    Figge, MT
    De Raedt, H
    COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 803 - 812
  • [27] A priori and posteriori error analysis for time-dependent Maxwell's equations
    Li, Jichun
    Lin, Yanping
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 292 : 54 - 68
  • [28] Gevrey class regularity for the time-dependent Ginzburg-Landau equations
    D. Chae
    J. Han
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 244 - 257
  • [29] Gevrey class regularity for the time-dependent Ginzburg-Landau equations
    Chae, DH
    Han, JM
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (02): : 244 - 257
  • [30] LOCAL REGULARITY OF SOLUTIONS TO WAVE-EQUATIONS WITH TIME-DEPENDENT POTENTIALS
    RUIZ, A
    VEGA, L
    DUKE MATHEMATICAL JOURNAL, 1994, 76 (03) : 913 - 940