Regularity in time of the time-dependent Maxwell equations

被引:4
|
作者
Assous, F
Ciarlet, P
机构
[1] CEA, BIII, DPTA, F-91680 Bruyeres Le Chatel, France
[2] ENSTA, UMA, F-75739 Paris 15, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 327卷 / 08期
关键词
D O I
10.1016/S0764-4442(98)80158-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We Study the regularity in time of the solution to the time-dependent Maxwell equations, in the vacuum bounded by a perfect conductor and without charges. First. we recall the results derived from the classical theory when the clo,nain has a Lipschitz boundary. Then, when it is a polyhedron, Lye extend the results to both the regular and singular parts of the electromagnetic field. Last, when it is a polygon, we improve those results concerning the singular part of the field. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:719 / 724
页数:6
相关论文
共 50 条
  • [1] Uniform Regularity for the Time-Dependent Ginzburg-Landau-Maxwell Equations
    Fan, Jishan
    Ozawa, Tohru
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 301 - 306
  • [2] DIRECT INTEGRATION OF TIME-DEPENDENT MAXWELL EQUATIONS
    UNZ, H
    AMERICAN JOURNAL OF PHYSICS, 1966, 34 (11) : 1015 - &
  • [3] The time-dependent Ginzburg-Landau Maxwell equations
    Tsutsumi, M
    Kasai, H
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (02) : 187 - 216
  • [4] NONLOCAL RADIATION CONDITIONS FOR THE TIME-DEPENDENT MAXWELL EQUATIONS
    MAIKOV, AR
    SVESHNIKOV, AG
    YAKUNIN, SA
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1990, 30 (06): : 133 - 141
  • [5] TIME-DEPENDENT INTEGRAL-EQUATIONS FOR THE MAXWELL SYSTEM
    BACHELOT, A
    PUJOLS, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (08): : 639 - 644
  • [6] Chebyshev method to solve the time-dependent Maxwell equations
    De Raedt, H
    Michielsen, K
    Kole, JS
    Figge, MT
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XV, 2003, 90 : 211 - 215
  • [7] An elementary solution of the Maxwell equations for a time-dependent source
    Rivera, R
    Villarroel, D
    EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (06) : 593 - 603
  • [8] OPTIMAL CONTROL OF THE FULL TIME-DEPENDENT MAXWELL EQUATIONS
    Bommer, Vera
    Yousept, Irwin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (01): : 237 - 261
  • [9] Time-dependent Ginzburg-Landau Maxwell equations
    Waseda Univ, Tokyo, Japan
    Nonlinear Anal Theory Methods Appl, 2 (187-216):
  • [10] Time-dependent Maxwell's equations with charges in singular geometries
    Assous, F.
    Ciarlet, P., Jr.
    Garcia, E.
    Segre, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) : 665 - 681