Evaluation of human-scale motion energy harvesting for wearable electronics

被引:1
作者
Kathpalia, Bharat [1 ,2 ]
Tan, David [1 ]
Stern, Ilan [2 ]
Erturk, Alper [1 ]
机构
[1] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Georgia Tech Res Inst, ATAS Energy & Sustainabil, Atlanta, GA 30318 USA
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2017 | 2017年 / 10164卷
关键词
Energy harvesting; piezoelectricity; wearable electronics;
D O I
10.1117/12.2260385
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the potential of human-scale motion energy harvesting toward enabling self-powered wearable electronic components to avoid the burden of battery replacement and charging in next-generation wireless applications. The focus in this work is piezoelectric transduction for converting human motion into electricity. Specifically, we explore three piezoelectric energy harvesting approaches experimentally and numerically: (1) Direct base excitation of a cantilevered bimorph configuration without/with a tip mass; (2) plucking of a bimorph cantilever using a flexible/nonlinear plectrum; and (3) direct force excitation of a curved unimorph. In all cases, electromechanical models are developed and experimental validations are also presented. Specifically a nonlinear plectrum model is implemented for the plucking energy harvester. Average power outputs are on the order 10-100 uW and can easily exceed mW in certain cases via design optimization.
引用
收藏
页数:10
相关论文
共 11 条
[1]  
[Anonymous], 2011, PIEZOELECTRIC ENERGY, DOI DOI 10.1002/9781119991151.APP1
[2]   Piezoelectret foam-based vibration energy harvesting [J].
Anton, S. R. ;
Farinholt, K. M. ;
Erturk, A. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (14) :1681-1692
[3]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[4]   Powering MEMS portable devices - a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems [J].
Cook-Chennault, K. A. ;
Thambi, N. ;
Sastry, A. M. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (04)
[5]   Energy harvesting from hydraulic pressure fluctuations [J].
Cunefare, K. A. ;
Skow, E. A. ;
Erturk, A. ;
Savor, J. ;
Verma, N. ;
Cacan, M. R. .
SMART MATERIALS AND STRUCTURES, 2013, 22 (02)
[6]  
Elvin N., 2013, ADV ENERGY HARVESTIN
[7]   M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: Harmonic balance analysis and experimental validation [J].
Leadenham, S. ;
Erturk, A. .
JOURNAL OF SOUND AND VIBRATION, 2014, 333 (23) :6209-6223
[8]   Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers [J].
Moro, L. ;
Benasciutti, D. .
SMART MATERIALS AND STRUCTURES, 2010, 19 (11)
[9]   Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation [J].
Pozzi, Michele ;
Zhu, Meiling .
SMART MATERIALS AND STRUCTURES, 2011, 20 (05)
[10]   Energy scavenging with shoe-mounted piezoelectrics [J].
Shenck, NS ;
Paradiso, JA .
IEEE MICRO, 2001, 21 (03) :30-42