Microstructure and Corrosion behavior of Friction Stir-Welded AZ31 alloy

被引:3
作者
Yao, Yao [1 ,2 ]
Tang, Jiaxin [1 ]
Chen, Tianqi [1 ]
Wang, Zhifeng [2 ]
Yu, Hui [2 ]
Zhou, Changxing [2 ]
Xiong, Hanqing [1 ,2 ,3 ]
机构
[1] Changsha Univ, Dept Mech & Elect Engn, Changsha 410022, Peoples R China
[2] Hunan Joinfront Welding Technol Co Ltd, Zhuzhou 412000, Peoples R China
[3] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
关键词
Mg alloy; Friction stir welding; Microstructure; Electrochemical property; Corrosion behavior; MAGNESIUM ALLOY; DISCHARGE BEHAVIOR; GRAIN-SIZE; MASS-LOSS; RESISTANCE; TENSILE; ANODE; PERFORMANCE; MANGANESE; STRESS;
D O I
10.20964/2020.02.18
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Microstructure and corrosion behavior in stir zone (SZ), thermo-mechanically affected zone (TMAZ), heat affected zone (HAZ) and base material (BM) of friction stir welded (FSWed) AZ31 alloy are investigated in this study. Results indicate that the four zones show microstructure evolution due to localized heat and plastic deformation during FSW process. Electrochemical measurements and immersion test demonstrate that the TMAZ presents lower corrosion resistance because of non-uniform microstructure. Furthermore, the HAZ is influenced by heat flow leading to the stress release. Although the HAZ exhibits coarse grains, the distribution of grain size is relatively homogenous. Thus, the HAZ displays the low corrosion current density, the low corrosion rate and the high Impedance value, possesses better corrosion resistance.
引用
收藏
页码:1058 / 1071
页数:14
相关论文
共 38 条
[1]  
[Anonymous], 2010, ASTM B. Stand, Vi, P1, DOI [DOI 10.1520/E0112-10.COPYRIGHT, DOI 10.1520/E0112-10]
[2]  
Aperador W, 2013, INT J ELECTROCHEM SC, V8, P12487
[3]   The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J].
Ben Hamu, G. ;
Eliezer, D. ;
Wagner, L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 468 (1-2) :222-229
[4]   Assessing the Corrosion of Commercially Pure Magnesium and Commercial AZ31B by Electrochemical Impedance, Mass-Loss, Hydrogen Collection, and Inductively Coupled Plasma Optical Emission Spectrometry Solution Analysis [J].
Bland, L. G. ;
King, A. D. ;
Birbilis, N. ;
Scully, J. R. .
CORROSION, 2015, 71 (02) :128-145
[5]   Effects of microstructural inhomogeneities and micro-defects on tensile and very high cycle fatigue behaviors of the friction stir welded ZK60 magnesium alloy joint [J].
Chen, Yao ;
He, Chao ;
Yang, Kun ;
Zhang, Hong ;
Wang, Chong ;
Wang, Qingyuan ;
Liu, Yongjie .
INTERNATIONAL JOURNAL OF FATIGUE, 2019, 122 :218-227
[6]   Friction-stir welding of magnesium alloy AZ31B [J].
Esparza, JA ;
Davis, WC ;
Trillo, EA ;
Murr, LE .
JOURNAL OF MATERIALS SCIENCE LETTERS, 2002, 21 (12) :917-920
[7]   Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al-air batteries [J].
Fan, Liang ;
Lu, Huimin ;
Leng, Jing .
ELECTROCHIMICA ACTA, 2015, 165 :22-28
[8]   Study on corrosion inhibitor in large pipelines under multiphase flow using EIS [J].
Hong, T ;
Sun, YH ;
Jepson, WP .
CORROSION SCIENCE, 2002, 44 (01) :101-112
[9]   Localized Corrosion of Friction Stir Spot Welds in Magnesium AZ31 Alloy [J].
James, A. ;
North, T. H. ;
Thorpe, S. J. .
CRITICAL FACTORS IN LOCALIZED CORROSION 7, 2012, 41 (25) :193-202
[10]   The corrosion behaviour of Al-Zn-In-Mg-Ti alloy in NaCl solution [J].
Jingling, M. A. ;
Jiuba, Wen ;
Gengxin, L. I. ;
Chunhua, X. V. .
CORROSION SCIENCE, 2010, 52 (02) :534-539