Recurrence in mean for group actions

被引:1
作者
Zhao, Cao [1 ]
Ji, Yong [2 ,3 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math & Phys, Suzhou 215009, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
关键词
Recurrence property; group actions; mean value;
D O I
10.1142/S0219493720500069
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the mean values of the recurrence are computed for general group actions. Let (X, d) be a metric space with a finite measure mu and G be a countable group acting on (X, d). Let F-1, F2, ... be a sequence of subsets of G with vertical bar F-n vertical bar -> infinity and put E-n = F-n(-1) F-n. If the Hausdorff measure H-h is finite on X and mu is T-invariant. We assume that mu and H-h are concordant. Then the function C(x) := lim inf (n ->infinity) (vertical bar Fn-1 vertical bar . min(g is an element of En\{e}) h(d(x, gx))) is mu-integrable and for any mu-measurable set B, we have integral(B) C(x)d mu <= H-h (B). If moreover, H-h(X)= 0, then integral(B) C(x)d mu = 0 without the concordance condition for the measure mu and H-h.
引用
收藏
页数:7
相关论文
共 6 条