Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states

被引:192
作者
Manolaridis, Ioannis [1 ]
Jackson, Scott M. [1 ]
Taylor, Nicholas M., I [2 ,3 ]
Kowal, Julia [1 ]
Stahlberg, Henning [2 ]
Locher, Kaspar P. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Biol, Inst Mol Biol & Biophys, Zurich, Switzerland
[2] Univ Basel, Biozentrum, Ctr Cellular Imaging & NanoAnalyt C CINA, Basel, Switzerland
[3] Univ Copenhagen, Fac Hlth & Med Sci, Novo Nord Fdn Ctr Prot Res, Copenhagen, Denmark
基金
瑞士国家科学基金会;
关键词
RESISTANCE-ASSOCIATED PROTEIN; BINDING CASSETTE TRANSPORTER; MULTIDRUG-RESISTANCE; P-GLYCOPROTEIN; CRYSTAL-STRUCTURE; CANCER; RECONSTITUTION;
D O I
10.1038/s41586-018-0680-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
ABCG2 is a transporter protein of the ATP-binding-cassette (ABC) family that is expressed in the plasma membrane in cells of various tissues and tissue barriers, including the blood-brain, blood-testis and maternal-fetal barriers(1-4). Powered by ATP, it translocates endogenous substrates, affects the pharmacokinetics of many drugs and protects against a wide array of xenobiotics, including anti-cancer drugs(5-12). Previous studies have revealed the architecture of ABCG2 and the structural basis of its inhibition by small molecules and antibodies(13,14). However, the mechanisms of substrate recognition and ATP-driven transport are unknown. Here we present high-resolution cryo-electron microscopy (cryo-EM) structures of human ABCG2 in a substrate-bound pre-translocation state and an ATP-bound post-translocation state. For both structures, we used a mutant containing a glutamine replacing the catalytic glutamate (ABCG2(EQ)), which resulted in reduced ATPase and transport rates and facilitated conformational trapping for structural studies. In the substrate-bound state, a single molecule of estrone-3-sulfate (E1S) is bound in a central, hydrophobic and cytoplasm-facing cavity about halfway across the membrane. Only one molecule of E1S can bind in the observed binding mode. In the ATP-bound state, the substrate-binding cavity has collapsed while an external cavity has opened to the extracellular side of the membrane. The ATP-induced conformational changes include rigid-body shifts of the transmembrane domains, pivoting of the nucleotide-binding domains (NBDs), and a change in the relative orientation of the NBD subdomains. Mutagenesis and in vitro characterization of transport and ATPase activities demonstrate the roles of specific residues in substrate recognition, including a leucine residue that forms a 'plug' between the two cavities. Our results show how ABCG2 harnesses the energy of ATP binding to extrude E1S and other substrates, and suggest that the size and binding affinity of compounds are important for distinguishing substrates from inhibitors.
引用
收藏
页码:426 / +
页数:17
相关论文
共 47 条
[31]   RECONSTITUTION OF MEMBRANE PROTEINS IN PHOSPHOLIPID BILAYER NANODISCS [J].
Ritchie, T. K. ;
Grinkova, Y. V. ;
Bayburt, T. H. ;
Denisov, I. G. ;
Zolnerciks, J. K. ;
Atkins, W. M. ;
Sligar, S. G. .
METHODS IN ENZYMOLOGY; LIPOSOMES, PT F, 2009, 464 :211-231
[32]   ABCG2: A perspective [J].
Robey, Robert W. ;
To, Kenneth K. K. ;
Polgar, Orsolya ;
Dohse, Marius ;
Fetsch, Patricia ;
Dean, Michael ;
Bates, Susan E. .
ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (01) :3-13
[33]   CTFFIND4: Fast and accurate defocus estimation from electron micrographs [J].
Rohou, Alexis ;
Grigorieff, Nikolaus .
JOURNAL OF STRUCTURAL BIOLOGY, 2015, 192 (02) :216-221
[34]   Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy [J].
Rosenthal, PB ;
Henderson, R .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 333 (04) :721-745
[35]   Human multidrug resistance ABCB and ABCG transporters:: Participation in a chemoimmunity defense system [J].
Sarkadi, Balazs ;
Homolya, Laszlo ;
Szakacs, Gergely ;
Varadi, Andras .
PHYSIOLOGICAL REVIEWS, 2006, 86 (04) :1179-1236
[36]   RAPID, SENSITIVE, AND SPECIFIC METHOD FOR DETERMINATION OF PROTEIN IN DILUTE-SOLUTION [J].
SCHAFFNE.W ;
WEISSMAN.C .
ANALYTICAL BIOCHEMISTRY, 1973, 56 (02) :502-514
[37]  
Sharom FJ, 2011, ESSAYS BIOCHEM, V50, P161, DOI [10.1042/bse0500161, 10.1042/BSE0500161]
[38]   Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states [J].
Shintre, Chitra A. ;
Pike, Ashley C. W. ;
Li, Qiuhong ;
Kim, Jung-In ;
Barr, Alastair J. ;
Goubin, Solenne ;
Shrestha, Leela ;
Yang, Jing ;
Berridge, Georgina ;
Ross, Jonathan ;
Stansfeld, Phillip J. ;
Sansom, Mark S. P. ;
Edwards, Aled M. ;
Bountra, Chas ;
Marsden, Brian D. ;
von Delft, Frank ;
Bullock, Alex N. ;
Gileadi, Opher ;
Burgess-Brown, Nicola A. ;
Carpenter, Elisabeth P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (24) :9710-9715
[39]   ABCG2 transports sulfated conjugates of steroids and xenobiotics [J].
Suzuki, M ;
Suzuki, H ;
Sugimoto, Y ;
Sugiyama, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (25) :22644-22649
[40]   Structure of the human multidrug transporter ABCG2 [J].
Taylor, Nicholas M. I. . ;
Manolaridis, Ioannis ;
Jackson, Scott M. ;
Kowal, Julia ;
Stahlberg, Henning ;
Locher, Kaspar P. .
NATURE, 2017, 546 (7659) :504-+