FRACTAL PROPERTIES OF POLAR SETS OF RANDOM STRING PROCESSES

被引:2
作者
Chen Zhenlong [1 ]
机构
[1] Zhejiang Gongshang Univ, Coll Stat & Math, Hangzhou 310018, Peoples R China
关键词
random string process; hitting probability; polar set; Hausdorff dimension; DIMENSION; MOTION; PATH;
D O I
10.1016/S0252-9602(11)60290-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies fractal properties of polar sets for random string processes. We give upper and lower bounds of the hitting probabilities on compact sets and prove some sufficient conditions and necessary conditions for compact sets to be polar for the random string process. Moreover, we also determine the smallest Hausdorff dimensions of non-polar sets by constructing a Cantor-type set to connect its Hausdorff dimension and capacity.
引用
收藏
页码:969 / 992
页数:24
相关论文
共 24 条
[1]  
[Anonymous], 1978, BROWNIAN MOTION CLAS
[2]  
BIERME H, 2009, B LOND MATH SOC, V41, P1
[3]  
Chen ZL, 2008, OSAKA J MATH, V45, P847
[4]   Dimension of polar sets for Brownian Sheet [J].
Chen, ZL ;
Liu, SY .
ACTA MATHEMATICA SCIENTIA, 2003, 23 (04) :549-560
[5]  
Falconer K., 1990, FRACTAL GEOMETRY
[6]   RANDOM MOTION OF STRINGS AND RELATED STOCHASTIC-EVOLUTION EQUATIONS [J].
FUNAKI, T .
NAGOYA MATHEMATICAL JOURNAL, 1983, 89 (MAR) :129-193
[7]   MEASURES OF HAUSDORFF TYPE AND STABLE PROCESSES [J].
HAWKES, J .
MATHEMATIKA, 1978, 25 (50) :202-212
[8]  
Kahane JP., 1985, SOME RANDOM SERIES F
[9]  
KAHANE JP, 1983, ORSAY SEM ANAL HARM, V38, P74
[10]  
KAKUTANI S, 1944, TOKYO P BMPERIAL ACA, V20, P706