Developing a new model for predicting the diameter distribution of oak forests using an artificial neural network

被引:0
作者
Long, Shisheng [1 ]
Zeng, Siqi [1 ]
Wang, Guangxing [2 ]
机构
[1] Cent South Univ Forestry & Technol, Fac Forestry, Changsha, Hunan, Peoples R China
[2] Southern Illinois Univ, Dept Geog & Environm Resources, Carbondale, IL 62901 USA
关键词
parameter prediction method; probability density function; Weibull distribution; dummy variable; 3-PARAMETER WEIBULL DISTRIBUTION; STATISTICAL DISTRIBUTIONS; PINE PLANTATIONS; FITTING DIAMETER; MIXED STANDS; GROWTH; YIELD; INTELLIGENCE; PARAMETERS; TOOL;
D O I
10.15287/afr.2021.2060
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The parameters of the probability density function (PDF) may be estimated using the parameter prediction method (PPM) and the parameter recovery method (PRM). However, these methods can suffer from accuracy issues. We developed and evaluated the prediction accuracy of two PPMs (stepwise regression model and dummy variable model) and an artificial neural network (ANN) to predict diameter distribution using data collected from 188 oak forest plots. The results demonstrated that the Weibull distribution performed well in fitting the diameter distribution. Compared with the stepwise regression model, the PPM model with stand type as a dummy variable reduced the predictional errors in estimating the parameters b and c of the Weibull distribution, but the prediction accuracy of the diameter distribution showed no significant improvement. Compared with the two PPM models, the ANN model with diameter class (C), average diameter (D) and stand type (T) as input variables decreased the RRMSE by 2.9% and 4.33% in estimating diameter distribution, respectively. The satisfactory prediction accuracy and simple model structure indicated that an ANN worked well for the prediction of the diameter distribution with few requirements and high practicality.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 50 条
[41]   An artificial neural network for predicting corrosion rate and hardness of magnesium alloys [J].
Xia, X. ;
Nie, J. F. ;
Davies, C. H. J. ;
Tang, W. N. ;
Xu, S. W. ;
Birbilis, N. .
MATERIALS & DESIGN, 2016, 90 :1034-1043
[42]   Predicting the Chemical Attributes of Fresh Citrus Fruits Using Artificial Neural Network and Linear Regression Models [J].
Al-Saif, Adel M. ;
Abdel-Sattar, Mahmoud ;
Eshra, Dalia H. ;
Sas-Paszt, Lidia ;
Mattar, Mohamed A. .
HORTICULTURAE, 2022, 8 (11)
[43]   Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant [J].
Bekkari, Naceureddine ;
Zeddouri, Aziez .
MANAGEMENT OF ENVIRONMENTAL QUALITY, 2019, 30 (03) :593-608
[44]   Predicting of torsional strength of RC beams by using different artificial neural network algorithms and building codes [J].
Arslan, M. Hakan .
ADVANCES IN ENGINEERING SOFTWARE, 2010, 41 (7-8) :946-955
[45]   Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method [J].
Elbeltagi, Ahmed ;
Nagy, Attila ;
Mohammed, Safwan ;
Pande, Chaitanya B. ;
Kumar, Manish ;
Bhat, Shakeel Ahmad ;
Zsembeli, Jozsef ;
Huzsvai, Laszlo ;
Tamas, Janos ;
Kovacs, Elza ;
Harsanyi, Endre ;
Juhasz, Csaba .
AGRONOMY-BASEL, 2022, 12 (02)
[46]   Physico-Chemical Properties Prediction of Flame Seedless Grape Berries Using an Artificial Neural Network Model [J].
Al-Saif, Adel M. ;
Abdel-Sattar, Mahmoud ;
Aboukarima, Abdulwahed M. ;
Eshra, Dalia H. ;
Gornik, Krzysztof .
FOODS, 2022, 11 (18)
[47]   Model reduction in acoustic inversion by artificial neural network [J].
Koponen, Janne ;
Lahivaara, Timo ;
Kaipio, Jari ;
Vauhkonen, Marko .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 150 (05) :3435-3444
[48]   Predicting aboveground biomass yield for moso bamboo (Phyllostachys pubescens) plantations based on the diameter distribution model [J].
Yen, Tian-Ming .
EUROPEAN JOURNAL OF FOREST RESEARCH, 2023, 142 (06) :1341-1351
[49]   Estimation of Maximum Daily Fresh Snow Accumulation Using an Artificial Neural Network Model [J].
Lee, Gun ;
Kim, Dongkyun ;
Kwon, Hyun-Han ;
Choi, Eunsoo .
ADVANCES IN METEOROLOGY, 2019, 2019
[50]   Prediction of Stone Column Bearing Capacity Using Artificial Neural Network Model (ANNs) [J].
Gaber, Maryam ;
Alsharef, Jamal M. A. .
GEOTECHNICAL ENGINEERING, 2024, 55 (03) :53-59