Developing a new model for predicting the diameter distribution of oak forests using an artificial neural network

被引:0
作者
Long, Shisheng [1 ]
Zeng, Siqi [1 ]
Wang, Guangxing [2 ]
机构
[1] Cent South Univ Forestry & Technol, Fac Forestry, Changsha, Hunan, Peoples R China
[2] Southern Illinois Univ, Dept Geog & Environm Resources, Carbondale, IL 62901 USA
关键词
parameter prediction method; probability density function; Weibull distribution; dummy variable; 3-PARAMETER WEIBULL DISTRIBUTION; STATISTICAL DISTRIBUTIONS; PINE PLANTATIONS; FITTING DIAMETER; MIXED STANDS; GROWTH; YIELD; INTELLIGENCE; PARAMETERS; TOOL;
D O I
10.15287/afr.2021.2060
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The parameters of the probability density function (PDF) may be estimated using the parameter prediction method (PPM) and the parameter recovery method (PRM). However, these methods can suffer from accuracy issues. We developed and evaluated the prediction accuracy of two PPMs (stepwise regression model and dummy variable model) and an artificial neural network (ANN) to predict diameter distribution using data collected from 188 oak forest plots. The results demonstrated that the Weibull distribution performed well in fitting the diameter distribution. Compared with the stepwise regression model, the PPM model with stand type as a dummy variable reduced the predictional errors in estimating the parameters b and c of the Weibull distribution, but the prediction accuracy of the diameter distribution showed no significant improvement. Compared with the two PPM models, the ANN model with diameter class (C), average diameter (D) and stand type (T) as input variables decreased the RRMSE by 2.9% and 4.33% in estimating diameter distribution, respectively. The satisfactory prediction accuracy and simple model structure indicated that an ANN worked well for the prediction of the diameter distribution with few requirements and high practicality.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 50 条
[21]   Using an artificial neural network to model seasonal changes in beach profiles [J].
Hashemi, M. R. ;
Ghadampour, Z. ;
Neill, S. P. .
OCEAN ENGINEERING, 2010, 37 (14-15) :1345-1356
[22]   Artificial Neural Network Model for Predicting Carrot Root Yield Loss in Relation to Mechanical Heading [J].
Rybacki, Piotr ;
Przygodzinski, Przemyslaw ;
Osuch, Andrzej ;
Osuch, Ewa ;
Kowalik, Ireneusz .
AGRICULTURE-BASEL, 2024, 14 (10)
[23]   Prognosis on the diameter of individual trees on the eastern region of the amazon using artificial neural networks [J].
Reis, Leonardo Pequeno ;
de Souza, Agostinho Lopes ;
Mazzei, Lucas ;
Marques dos Reis, Pamella Carolline ;
Leite, Hello Garcia ;
Boechat Soares, Carlos Pedro ;
Miquelino Eleto Torres, Carlos Moreira ;
da Silva, Liniker Fernandes ;
Ruschel, Ademir Roberto .
FOREST ECOLOGY AND MANAGEMENT, 2016, 382 :161-167
[24]   Predicting postoperative pain following root canal treatment by using artificial neural network evaluation [J].
Gao, Xin ;
Xin, Xing ;
Li, Zhi ;
Zhang, Wei .
SCIENTIFIC REPORTS, 2021, 11 (01)
[25]   Predicting Mechanical Properties of Golden Delicious Apple Using Ultrasound Technique and Artificial Neural Network [J].
Vasighi-Shojae, Haydar ;
Gholami-Parashkouhi, Mohammad ;
Mohammadzamani, Davood ;
Soheili, Ahmad .
FOOD ANALYTICAL METHODS, 2020, 13 (03) :699-705
[26]   Precision Obtained Using an Artificial Neural Network for Predicting the Material Removal Rate in Ultrasonic Machining [J].
Zhong, Gaoyan ;
Kang, Min ;
Yang, Shoufeng .
APPLIED SCIENCES-BASEL, 2017, 7 (12)
[27]   Optimization Research on Artificial Neural Network Model [J].
Zhao Huanping ;
Lv Congying ;
Yang Xinfeng .
2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, :1724-1727
[28]   Developing an artificial intelligent model for predicting combustion and flammability properties [J].
Jiang, Lin ;
Mensah, Rhoda Afriyie ;
Asante-Okyere, Solomon ;
Forsth, Michael ;
Xu, Qiang ;
Ziggah, Yao Yevenyo ;
Restas, Agoston ;
Berto, Filippo ;
Das, Oisik .
FIRE AND MATERIALS, 2022, 46 (05) :830-842
[29]   Development of a new hybrid model to enhance streamflow estimation using artificial neural network and reptile search algorithm [J].
Bahmani, Mohammad Javad ;
Kayhomayoon, Zahra ;
Milan, Sami Ghordoyee ;
Hassani, Farhad ;
Malekpoor, Mohammadreza ;
Berndtsson, Ronny .
SCIENTIFIC REPORTS, 2025, 15 (01)
[30]   Reliability inference for products of Weibull distribution by using artificial neural network formal description [J].
Chen, Yung-Chung ;
Lee, Pei-Hsi ;
Chen, Chien-Ming .
EXPERIMENTAL MECHANICS IN NANO AND BIOTECHNOLOGY, PTS 1 AND 2, 2006, 326-328 :573-576