Carbon Dioxide Mediated Cellulose Dissolution and Derivatization to Cellulose Carbonates in a Low-pressure System

被引:6
作者
Wang, Chen-Gang [1 ]
Li, Ning [1 ,3 ]
Wu, Gang [2 ]
Lin, Ting Ting [1 ]
Lee, Agnes Mei Xian [1 ]
Yang, Shuo-Wang [2 ]
Li, Zibiao [1 ]
Luo, Dr He-Kuan [1 ]
机构
[1] ASTAR, Inst Mat Res & Engn IMRE, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
[2] ASTAR, Inst High Performance Comp IHPC, 16-16 Connexis North,1 Fusionopolis Way, Singapore 138632, Singapore
[3] ASTAR, Inst Bioengn & Bioimaging IBB, 31 Biopolis Way,Nanos 07-01, Singapore 138669, Singapore
来源
CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS | 2022年 / 3卷
关键词
Microcrystalline cellulose; Carbon dioxide; Cellulose carbonate; Dissolution; BTMG; DENSITY FUNCTIONALS; CO2; DERIVATIVES; ACTIVATION; BIOPOLYMER; CHEMISTRY; AMINO;
D O I
10.1016/j.carpta.2022.100186
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
An effective switchable solvent system using carbon dioxide (CO2) and 2-tert-butyl-1,1,3,3-tetramethylguanidine (BTMG) for cellulose dissolution and derivatization was developed. High concentration cellulose solution (up to 10 wt%) could be achieved by dissolving microcrystalline cellulose rapidly, within 5 min, into DMSO in presence of BTMG and 1 atm CO2 at room temperature. The cellulose-carbonate anion intermediate was characterized by 1H and 13C NMR spectroscopies, emphasizing the generation of cellulose carbonate anions and protonated BTMG. Addition of organochlorides into the cellulose solution triggers a nucleophilic substitution with cellulosecarbonate anions, producing various cellulose benzyl carbonates and a cellulose-carbonate-ester with degree of substitution (DS) up to 1.83 at 1 atm CO2 pressure and room temperature. The activation energy (Ea) and Gibbs free energy change (Delta G) of CO2-mediated dissolution and nucleophilic substitution were calculated by density functional theory. The results showed that the nucleophilic substitution is the rate-limiting step.
引用
收藏
页数:7
相关论文
共 51 条
[1]  
[Anonymous], 1974, ADV CARBOHYD CHEM BI
[2]   Lignocellulose, Cellulose and Lignin as Renewable Alternative Fuels for Direct Biomass Fuel Cells [J].
Antolini, Ermete .
CHEMSUSCHEM, 2021, 14 (01) :189-207
[3]   Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters [J].
Arca, Hale Cigdem ;
Mosquera-Giraldo, Laura I. ;
Bi, Vivian ;
Xu, Daiqiang ;
Taylor, Lynne S. ;
Edgar, Kevin J. .
BIOMACROMOLECULES, 2018, 19 (07) :2351-2376
[4]   Enantioselective Bronsted Base Catalysis with Chiral Cyclopropenimines [J].
Bandar, Jeffrey S. ;
Lambert, Tristan H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (12) :5552-5555
[5]   BETA-D-GLUCOSIDASE CHEMICALLY BOUND TO MICROCRYSTALLINE CELLULOSE [J].
BARKER, SA ;
DOSS, SH ;
GRAY, CJ ;
KENNEDY, JF ;
STACEY, M ;
YEO, TH .
CARBOHYDRATE RESEARCH, 1971, 20 (01) :1-&
[6]  
Byrne F. P., 2016, SUSTAINABLE CHEM PRO, V4, P7, DOI 10.1186/s40508-016-0051-z
[7]   Biodegradable microcapsules designed via 'click' chemistry [J].
De Geest, Bruno G. ;
Van Camp, Wim ;
Du Prez, Filip E. ;
De Smedt, Stefaan C. ;
Demeester, Jo ;
Hennink, Wim E. .
CHEMICAL COMMUNICATIONS, 2008, (02) :190-192
[8]   Degradable multilayer films and hollow capsules via a 'Click' strategy [J].
De Geest, Bruno G. ;
Van Camp, Wim ;
Du Prez, Filip E. ;
De Smedt, Stefaan C. ;
Demeester, Jo ;
Hennink, Wim E. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2008, 29 (12-13) :1111-1118
[9]   Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering [J].
Dinoro, Jeremy ;
Maher, Malachy ;
Talebian, Sepehr ;
Jafarkhani, Mahboubeh ;
Mehrali, Mehdi ;
Orive, Gorka ;
Foroughi, Javad ;
Lord, Megan S. ;
Dolatshahi-Pirouz, Alireza .
BIOMATERIALS, 2019, 214
[10]   Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran [J].
Elschner, Thomas ;
Obst, Franziska ;
Stana-Kleinschek, Karin ;
Kargl, Rupert ;
Heinze, Thomas .
CARBOHYDRATE POLYMERS, 2017, 161 :1-9