A comparison of fuzzy identification methods on benchmark datasets

被引:6
作者
Aleksovski, Darko [1 ]
Dovzan, Dejan [2 ]
Dzeroski, Soso [1 ]
Kocijan, Jus [3 ,4 ]
机构
[1] Jozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Elect Engn, Trzaska Cesta 25, Ljubljana, Slovenia
[3] Jozef Stefan Inst, Dept Syst & Control, Jamova Cesta 39, Ljubljana, Slovenia
[4] Univ Nova Gorica, Vipavska 13, Nova Gorica, Slovenia
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 05期
关键词
Fuzzy model identification; tree partitioning; fuzzy clustering; ensembles; MODELS;
D O I
10.1016/j.ifacol.2016.07.085
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we address the task of discrete-time modeling of nonlinear dynamic systems. We use Takagi-Sugeno fizzy models built by LOLIMOT and SUHICLUST, as well as ensembles of LOLIMOT fuzzy models to accurately model nonlinear dynamic systems from input-output data. Vie evaluate these approaches on benchmark datasets for three laboratory processes. The measured data for the case studies are publicly available and arc used for development, testing and benchmarking of system identification algorithms for nonlinear dynamic systems. Our experimental results show that, SUHICLUST produces smaller models than LOLIMOT for two of the three datasets. In terms of error, ensembles of LOLIMOT models improve the predictive performance over that of a single LOLIMOT or SUHICLUST model. (C) 2016, IPAC (International federation or Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 20 条
  • [1] Aleksovski D., 2015, IEEE T FUZZY SYSTEMS
  • [2] [Anonymous], 1997, IEEE T AUTOM CONTROL, DOI DOI 10.1109/TAC.1997.633847
  • [3] Babuska R, 2002, PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, P1081, DOI 10.1109/FUZZ.2002.1006654
  • [4] Bagging predictors
    Breiman, L
    [J]. MACHINE LEARNING, 1996, 24 (02) : 123 - 140
  • [5] Dietterich, 2002, HDB BRAIN THEORY NEU, P405, DOI DOI 10.1007/978-1-4419-9326-7_1
  • [6] Hartmann B., 2013, IEEE S COMP INT CONT, P41
  • [7] Supervised Hierarchical Clustering in Fuzzy Model Identification
    Hartmann, Benjamin
    Baenfer, Oliver
    Nelles, Oliver
    Sodja, Anton
    Teslic, Luka
    Skrjanc, Igor
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (06) : 1163 - 1176
  • [8] JANG JSR, 1994, PROCEEDINGS OF THE THIRD IEEE CONFERENCE ON FUZZY SYSTEMS - IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, VOLS I-III, P480, DOI 10.1109/FUZZY.1994.343738
  • [9] Multiobjective identification of Takagi-Sugeno fuzzy models
    Johansen, TA
    Babuska, R
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (06) : 847 - 860
  • [10] Krogh A., 1995, Advances in Neural Information Processing Systems 7, P231