Isotropy of three-dimensional quantum lattice Boltzmann schemes

被引:24
作者
Dellar, P. J. [1 ]
Lapitski, D. [1 ]
Palpacelli, S. [2 ]
Succi, S. [3 ]
机构
[1] Math Inst, OCIAM, Oxford OX1 3LB, England
[2] Numidia Soc Responsabilita Limitata, I-00144 Rome, Italy
[3] CNR, Ist Appl Calcolo, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
SCHRODINGER-EQUATION; CELLULAR-AUTOMATA; GAS AUTOMATA; DIRAC; MODEL;
D O I
10.1103/PhysRevE.83.046706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Numerical simulations with previous formulations of the quantum lattice Boltzmann (QLB) scheme in three spatial dimensions showed significant lack of isotropy. In two or more spatial dimensions the QLB approach relies upon operator splitting to decompose the time evolution into a sequence of applications of the one-dimensional QLB scheme along coordinate axes. Each application must be accompanied by a rotation of the wave function into a basis of chiral eigenstates aligned along the relevant axis. The previously observed lack of isotropy was due to an inconsistency in the application of these rotations. Once this inconsistency is removed, the QLB scheme is shown to exhibit isotropic behavior to within a numerical error that scales approximately linearly with the lattice spacing. This establishes the viability of the QLB approach in two and three spatial dimensions.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Three-dimensional numerical simulation of rising bubbles in the presence of cylindrical obstacles, using lattice Boltzmann method [J].
Alizadeh, M. ;
Seyyedi, S. M. ;
Rahni, M. Taeibi ;
Ganji, D. D. .
JOURNAL OF MOLECULAR LIQUIDS, 2017, 236 :151-161
[42]   THREE-DIMENSIONAL MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN SIMULATION OF VAPOR CONDENSATION ON SUBCOOLED WALL [J].
Zhao, Wandong ;
Xu, Ben ;
Zhang, Ying .
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 8A, 2019,
[43]   THREE-DIMENSIONAL WEIGHTED MULTIPLE-RELAXATION-TIME PSEUDOPOTENTIAL LATTICE BOLTZMANN METHOD FOR MULTIPHASE FLOW [J].
Tang, Jun ;
Zhang, Shengyuan ;
Wu, Huiying .
PROCEEDINGS OF ASME 2021 FLUIDS ENGINEERING DIVISION SUMMER MEETING (FEDSM2021), VOL 1, 2021,
[44]   Ferrofluid Permeation into Three-Dimensional Random Porous Media: A Numerical Study Using the Lattice Boltzmann Method [J].
Hadavand, Mahshid ;
Nabovati, Aydin ;
Sousa, Antonio C. M. .
TRANSPORT IN POROUS MEDIA, 2013, 99 (01) :191-206
[45]   Lattice Boltzmann study of three-dimensional immiscible Rayleigh-Taylor instability in turbulent mixing stage [J].
Liu, Bin ;
Zhang, Chunhua ;
Lou, Qin ;
Liang, Hong .
FRONTIERS OF PHYSICS, 2022, 17 (05)
[46]   Three-dimensional lattice Boltzmann simulations of microdroplets including contact angle hysteresis on topologically structured surfaces [J].
Ba, Yan ;
Kang, Qinjun ;
Liu, Haihu ;
Sun, Jinju ;
Wang, Chao .
JOURNAL OF COMPUTATIONAL SCIENCE, 2016, 17 :418-430
[47]   Numerical investigation of a combined lattice Boltzmann-level set method for three-dimensional multiphase flow [J].
Thoemmes, G. ;
Becker, J. ;
Junk, M. ;
Vaikuntam, A. K. ;
Kehrwald, D. ;
Klar, A. ;
Steiner, K. ;
Wiegmann, A. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2009, 23 (10) :687-697
[48]   An exact energy conservation property of the quantum lattice Boltzmann algorithm [J].
Dellar, Paul J. .
PHYSICS LETTERS A, 2011, 376 (01) :6-13
[49]   Quantum lattice Boltzmann is a quantum walk [J].
Succi, Sauro ;
Fillion-Gourdeau, Francois ;
Palpacelli, Silvia .
EPJ QUANTUM TECHNOLOGY, 2015, 2
[50]   Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice Boltzmann method [J].
Fei, Linlin ;
Yang, Jiapei ;
Chen, Yiran ;
Mo, Huangrui ;
Luo, Kai H. .
PHYSICS OF FLUIDS, 2020, 32 (10)