Isotropy of three-dimensional quantum lattice Boltzmann schemes

被引:24
作者
Dellar, P. J. [1 ]
Lapitski, D. [1 ]
Palpacelli, S. [2 ]
Succi, S. [3 ]
机构
[1] Math Inst, OCIAM, Oxford OX1 3LB, England
[2] Numidia Soc Responsabilita Limitata, I-00144 Rome, Italy
[3] CNR, Ist Appl Calcolo, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
SCHRODINGER-EQUATION; CELLULAR-AUTOMATA; GAS AUTOMATA; DIRAC; MODEL;
D O I
10.1103/PhysRevE.83.046706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Numerical simulations with previous formulations of the quantum lattice Boltzmann (QLB) scheme in three spatial dimensions showed significant lack of isotropy. In two or more spatial dimensions the QLB approach relies upon operator splitting to decompose the time evolution into a sequence of applications of the one-dimensional QLB scheme along coordinate axes. Each application must be accompanied by a rotation of the wave function into a basis of chiral eigenstates aligned along the relevant axis. The previously observed lack of isotropy was due to an inconsistency in the application of these rotations. Once this inconsistency is removed, the QLB scheme is shown to exhibit isotropic behavior to within a numerical error that scales approximately linearly with the lattice spacing. This establishes the viability of the QLB approach in two and three spatial dimensions.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Anisotropic slip boundary condition for three-dimensional lattice Boltzmann simulations of liquid microflows [J].
Guo, Wenqiang ;
Hou, Guoxiang .
PHYSICS OF FLUIDS, 2022, 34 (07)
[22]   Three-dimensional simulation of bubble dynamics in a narrow pipe using lattice Boltzmann method [J].
Shi, D. Y. ;
Wang, Z. K. ;
Zhang, A. M. .
INTERNATIONAL SYMPOSIUM OF CAVITATION AND MULTIPHASE FLOW (ISCM 2014), PTS 1-6, 2015, 72
[23]   Lattice Boltzmann simulations of three-dimensional thermal convective flows at high Rayleigh number [J].
Xu, Ao ;
Shi, Le ;
Xi, Heng-Dong .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 140 :359-370
[24]   Three-Dimensional Lattice Boltzmann Flux Solver and Its Applications to Incompressible Isothermal and Thermal Flows [J].
Wang, Yan ;
Shu, Chang ;
Teo, Chiang Juay ;
Wu, Jie ;
Yang, Liming .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (03) :593-620
[25]   Lattice Boltzmann simulation for three-dimensional natural convection with solid-liquid phase change [J].
Hu, Yang ;
Li, Decai ;
Shu, Shi ;
Niu, Xiaodong .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 113 :1168-1178
[26]   Three-dimensional lattice Boltzmann simulation of bubble behavior in a flap-induced shear flow [J].
Wang, Zhikai ;
Shi, Dongyan ;
Zhang, Aman .
COMPUTERS & FLUIDS, 2015, 123 :44-53
[27]   Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows [J].
Chen, Z. ;
Shu, C. ;
Tan, D. .
PHYSICS OF FLUIDS, 2017, 29 (05)
[28]   A Lattice Boltzmann Simulation of Three-Dimensional Displacement Flow of Two Immiscible Liquids in a Square Duct [J].
Redapangu, Prasanna R. ;
Sahu, Kirti Chandra ;
Vanka, S. P. .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (12)
[29]   Lattice Boltzmann method simulating hemodynamics in the three-dimensional stenosed and recanalized human carotid bifurcations [J].
Kang XiuYing .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2015, 58 (01) :1-8
[30]   Study of fluid displacement in three-dimensional porous media with an improved multicomponent pseudopotential lattice Boltzmann method [J].
Sedahmed, M. ;
Coelho, R. C., V ;
Araujo, N. A. M. ;
Wahba, E. M. ;
Warda, H. A. .
PHYSICS OF FLUIDS, 2022, 34 (10)