Isotropy of three-dimensional quantum lattice Boltzmann schemes

被引:23
|
作者
Dellar, P. J. [1 ]
Lapitski, D. [1 ]
Palpacelli, S. [2 ]
Succi, S. [3 ]
机构
[1] Math Inst, OCIAM, Oxford OX1 3LB, England
[2] Numidia Soc Responsabilita Limitata, I-00144 Rome, Italy
[3] CNR, Ist Appl Calcolo, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
SCHRODINGER-EQUATION; CELLULAR-AUTOMATA; GAS AUTOMATA; DIRAC; MODEL;
D O I
10.1103/PhysRevE.83.046706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Numerical simulations with previous formulations of the quantum lattice Boltzmann (QLB) scheme in three spatial dimensions showed significant lack of isotropy. In two or more spatial dimensions the QLB approach relies upon operator splitting to decompose the time evolution into a sequence of applications of the one-dimensional QLB scheme along coordinate axes. Each application must be accompanied by a rotation of the wave function into a basis of chiral eigenstates aligned along the relevant axis. The previously observed lack of isotropy was due to an inconsistency in the application of these rotations. Once this inconsistency is removed, the QLB scheme is shown to exhibit isotropic behavior to within a numerical error that scales approximately linearly with the lattice spacing. This establishes the viability of the QLB approach in two and three spatial dimensions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Convergence of a three-dimensional quantum lattice Boltzmann scheme towards solutions of the Dirac equation
    Lapitski, Denis
    Dellar, Paul J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1944): : 2155 - 2163
  • [2] On the Three-Dimensional Central Moment Lattice Boltzmann Method
    Premnath, Kannan N.
    Banerjee, Sanjoy
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (04) : 747 - 794
  • [3] Benchmarking of three-dimensional multicomponent lattice Boltzmann equation
    Xu, X.
    Burgin, K.
    Ellis, M. A.
    Halliday, I.
    PHYSICAL REVIEW E, 2017, 96 (05)
  • [4] Three-dimensional cavitation simulation using lattice Boltzmann method
    Zhang Xin-Ming
    Zhou Chao-Ying
    Shams, Islam
    Liu Jia-Qi
    ACTA PHYSICA SINICA, 2009, 58 (12) : 8406 - 8414
  • [5] Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice
    White, Alexander Thomas
    Chong, Chuh Khiun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (16) : 6367 - 6378
  • [6] Three-dimensional vorticity-velocity formulation in a lattice Boltzmann method
    Kefayati, Gholamreza
    PHYSICS OF FLUIDS, 2024, 36 (09)
  • [7] Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method
    Sadeghi, R.
    Shadloo, M. S.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2017, 71 (05) : 560 - 574
  • [8] Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability
    Liang, H.
    Li, Q. X.
    Shi, B. C.
    Chai, Z. H.
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [9] Three-dimensional lattice Boltzmann flux solver for three-phase/component flow
    Zhang, Da
    Li, Yan
    Gong, Liang
    Zhu, Chenlin
    Shu, Chang
    PHYSICS OF FLUIDS, 2024, 36 (08)
  • [10] Lattice Boltzmann Simulation of Three-Dimensional Thermomagnetic Convection in a Micro-Channel
    Hadavand, M.
    Sousa, A. C. M.
    RECENT PROGRESSES IN FLUID DYNAMICS RESEARCH - PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON FLUID MECHANICS, 2011, 1376