The size influence of silica microspheres on photonic band gap of photonic crystals

被引:3
|
作者
Ma, Xiying [1 ]
Yan, Zhijun [1 ]
机构
[1] Shaoxing Coll Arts & Sci, Inst Optoelect Mat, Shaoxing 312000, Zhejiang Prov, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2007年 / 21卷 / 16期
基金
中国国家自然科学基金;
关键词
photonic crystal; three-dimensional; photonic band gap;
D O I
10.1142/S0217979207037338
中图分类号
O59 [应用物理学];
学科分类号
摘要
The size influence of silica microspheres on the photonic band gap (PBG) of three-dimensional face-centered-cubic (fcc) photonic crystals (PCs) is studied by means of colloidal photonic crystals, which are self-assembled by the vertical deposition technique. Monodispersed SiO2 microspheres with a diameter of 220 320 nm are synthesized using tetraethylorthosilicate (TEOS) as a precursor material. We find that the PBG of the PCs shifts from 450 run to 680 nm with silica spheres increasing from 220 to 320 run. In addition, the PBG moves to higher photon energy when the samples are annealed in a temperature range of 200-700 degrees C. The large shift results from the decrease in refraction index of silica due to moisture evaporation.
引用
收藏
页码:2761 / 2768
页数:8
相关论文
共 50 条
  • [1] Effect of Size of Silica Microspheres on Photonic Band Gap
    Dhiman, N.
    Sharma, A.
    Singh, B. P.
    Gathania, A. K.
    SOLID STATE PHYSICS: PROCEEDINGS OF THE 58TH DAE SOLID STATE PHYSICS SYMPOSIUM 2013, PTS A & B, 2014, 1591 : 1696 - 1698
  • [2] Fabrication and photonic band gap property of silica colloidal crystals
    Kuai, SL
    Zhang, YZ
    Hu, XF
    JOURNAL OF INORGANIC MATERIALS, 2002, 17 (01) : 159 - 162
  • [3] Experimental study on photonic band gap extension in heterostructural photonic crystals
    Song, QH
    Liu, LY
    Wang, WC
    Xu, L
    INTERNATIONAL SYMPOSIUM ON PHOTONIC GLASS (ISPG 2002), 2003, 5061 : 234 - 238
  • [4] Photonic band gap engineering in 2D photonic crystals
    Kalra, Yogita
    Sinha, R-K
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1155 - 1164
  • [5] Photonic band gap engineering in 2D photonic crystals
    Yogita Kalra
    R K Sinha
    Pramana, 2006, 67 : 1155 - 1164
  • [6] Application on the photonic band gap of titanium dioxide photonic crystals
    Li Xiaojing
    Qiao Guanjun
    Chen Jierong
    Xi, Zhou
    PROGRESS IN CHEMISTRY, 2008, 20 (04) : 491 - 498
  • [7] Si-based photonic crystals and photonic-band-gap waveguides
    Notomi, M
    Shinya, A
    Yamada, K
    Takahashi, J
    Takahashi, C
    Yokohama, I
    PHOTONIC BANDGAP MATERIALS AND DEVICES, 2002, 4655 : 92 - 104
  • [8] Analysis of the photonic band gap of plasma photonic crystals with filmy structure
    Yang, Hong Wei
    Yang, Ze Kun
    Zhu, Cheng-Ke
    Li, Ai Ping
    You, Xiong
    OPTIK, 2014, 125 (01): : 532 - 535
  • [9] The influence of shape and orientation of scatterers on the photonic band gap in 2D metallic photonic crystals
    Sedghi, A. A.
    Kalafi, M.
    Vala, A. Soltani
    Rezaei, B.
    OPTICS COMMUNICATIONS, 2010, 283 (11) : 2356 - 2362
  • [10] Effect of the Photonic Band Gap Position on the Photocatalytic Activity of Anodic Titanium Oxide Photonic Crystals
    Belokozenko, M. A.
    Sapoletova, N. A.
    Kushnir, S. E.
    Napol'skii, K. S.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2024, 69 (01) : 127 - 134