Gauge theory by canonical transformations

被引:3
作者
Koenigstein, Adrian [1 ,2 ]
Kirsch, Johannes [2 ]
Stoecker, Horst [1 ,2 ,3 ]
Struckmeier, Juergen [1 ,2 ,3 ]
Vasak, David [2 ]
Hanauske, Matthias [1 ,2 ]
机构
[1] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
[2] Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany
[3] GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany
关键词
Gauge theory; canonical transformation; Hamilton formalism; de Donder-Weyl theory; scalar electrodynamics; field theory; FIELD-THEORY; FORMALISM; CALCULUS;
D O I
10.1142/S0218301316420052
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Electromagnetism, the strong and the weak interactions are commonly formulated as gauge theories in a Lagrangian description. In this paper, we present an alternative formal derivation of U(1)-gauge theory in a manifestly covariant Hamilton formalism. We make use of canonical transformations as our guiding tool to formalize the gauging procedure. The introduction of the gauge field, its transformation behavior and a dynamical gauge field Lagrangian/Hamiltonian are unavoidable consequences of this formalism, whereas the form of the free gauge Lagrangian/Hamiltonian depends on the selection of the gauge dependence of the canonically conjugate gauge fields.
引用
收藏
页数:31
相关论文
共 23 条
  • [1] [Anonymous], 1996, QUANTUM THEORY FIELD
  • [2] [Anonymous], 1994, ADV SERIES MATH PHYS, DOI DOI 10.1142/1948#T=ABOUTBOOK
  • [3] Cheng T. P., 1984, GAUGE THEORY ELEMENT
  • [4] DeDonder T., 1930, Theorie Invariantive du Calcul des Variations
  • [5] Dehnen H., 1999, THEORIE ELEMENTARTEI
  • [6] Invariable forms of waves and the movement equations for a loaded mass point
    Fock, V
    [J]. ZEITSCHRIFT FUR PHYSIK, 1926, 39 (2/3): : 226 - 232
  • [7] Gasiorowicz S., 1966, Elementary Particle Physics
  • [8] HAMILTONIAN MECHANICS OF FIELDS
    GOOD, RH
    [J]. PHYSICAL REVIEW, 1954, 93 (01): : 239 - 243
  • [9] Greiner W., 1996, Field Quantization
  • [10] Greiner W, 2010, CLASSICAL MECH