General Type-2 Fuzzy Gain Scheduling PID Controller with Application to Power-Line Inspection Robots

被引:41
作者
Zhao, Tao [1 ]
Chen, Yao [1 ]
Dian, Songyi [1 ]
Guo, Rui [2 ]
Li, Shengchuan [3 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
[2] State Grid Shandong Elect Power Co, Jinan 250001, Peoples R China
[3] State Grid Liaoning Elect Power Co Ltd, Elect Power Res Inst, Shenyang 110006, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
General type-2 fuzzy gain scheduling PID controller; Balance control; Inspection robot; Nonlinear under-actuated system; LOGIC SYSTEMS; TRACKING CONTROL; SETS; REDUCTION; PENDULUM; DESIGN;
D O I
10.1007/s40815-019-00780-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a general type-2 fuzzy gain scheduling PID (GT2FGS-PID) controller is presented to achieve self-balance adjustment of the power-line inspection (PLI) robot system. As the PLI robot system is an under-actuated nonlinear system, obtaining the full information of the four-state variables is necessary to balance the PLI robot. However, as the number of input variables increases, the number of control rules increases exponentially, making the design of the fuzzy controller extremely complex. Therefore, the proposed controller prevents the problem of rule explosion using information fusion and then simplifies the control design. Moreover, the particle swarm optimization algorithm is used to select improved controller parameters and make the controller achievable. In this paper, the control performance and anti-interference ability of the traditional PID control, type-1 fuzzy control, interval type-2 fuzzy control, and general type-2 fuzzy control methods are compared. By means of numerical simulation, we can conclude that the GT2FGS-PID controller exhibits superior stability and robustness over other controllers for the PLI robot system.
引用
收藏
页码:181 / 200
页数:20
相关论文
共 62 条
[1]   Type-2 Fuzzy Sets as Functions on Spaces [J].
Aisbett, Janet ;
Rickard, John T. ;
Morgenthaler, David G. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (04) :841-844
[2]   Fuzzy PD plus I control of a six DOF robot manipulator [J].
Alavandar, Srinivasan ;
Nigam, M. J. .
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2008, 35 (02) :125-132
[3]  
[Anonymous], FUZZY SETS SYSTEMS T
[4]  
[Anonymous], 2017, UNCERTAIN RULE BASED
[5]   Fuzzy PID controller: Design, performance evaluation, and stability analysis [J].
Carvajal, J ;
Chen, GR ;
Ogmen, H .
INFORMATION SCIENCES, 2000, 123 (3-4) :249-270
[6]  
Castillo O, 2008, INT J INNOV COMPUT I, V4, P771
[7]   A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design [J].
Castillo, Oscar ;
Amador-Angulo, Leticia .
INFORMATION SCIENCES, 2018, 460 :476-496
[8]   A generalized type-2 fuzzy granular approach with applications to aerospace [J].
Castillo, Oscar ;
Cervantes, Leticia ;
Soria, Jose ;
Sanchez, Mauricio ;
Castro, Juan R. .
INFORMATION SCIENCES, 2016, 354 :165-177
[9]   A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems [J].
Castillo, Oscar ;
Amador-Angulo, Leticia ;
Castro, Juan R. ;
Garcia-Valdez, Mario .
INFORMATION SCIENCES, 2016, 354 :257-274
[10]  
Castillo O, 2008, STUD FUZZ SOFT COMP, V223, P1