Electromagnetic Optimization Using Mixed-Parameter and Multiobjective Covariance Matrix Adaptation Evolution Strategy

被引:37
作者
BouDaher, Elie [1 ]
Hoorfar, Ahmad [1 ]
机构
[1] Villanova Univ, Dept Elect & Comp Engn, Antenna Res Lab, Villanova, PA 19085 USA
关键词
Covariance matrix adaptation evolution strategy (CMA-ES); electromagnetic (EM) optimization; mixed-parameter optimization; multiobjective optimization; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHMS; DESIGN;
D O I
10.1109/TAP.2015.2398116
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Different variations of the covariance matrix adaptation evolution strategy (CMA-ES) are used in the design and optimization of electromagnetic (EM) problems. Two different schemes for the implementation of mixed-parameter CMA-ES and one scheme for the implementation of multiobjective CMA-ES are presented. Mixed-parameter CMA-ES is attractive in EM optimization when both continuous and discrete design parameters are involved. The first mixed-parameter scheme uses a Poisson mutation operator to update the discrete variables, and the second one forces an integer mutation on discrete variables with small variances. Multiobjective CMA-ES, developed in this paper, optimizes designs with respect to multiple objective functions simultaneously. It ranks the candidate solutions according to two levels: nondominated sorting and crowding distance. Several antenna and microwave design problems are presented to evaluate the performance of these schemes and compare them with other nature-based optimization algorithms.
引用
收藏
页码:1712 / 1724
页数:13
相关论文
共 40 条
[1]  
[Anonymous], 2007, P IEEE ANT PROP SOC
[2]  
[Anonymous], 1995, Evolution and Optimum Seeking", Ed
[3]  
Back T., 1996, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms
[4]  
BouDaher E, 2013, IEEE ANTENNAS PROP, P406, DOI 10.1109/APS.2013.6710864
[5]  
Chankong V., 1983, MULTIOBJECTIVE DECIS
[6]  
Chellapilla K, 1998, IEEE AP-S, P42, DOI 10.1109/APS.1998.698753
[7]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[8]  
Fogel D. B., 1994, EVOLUTIONARY COMPUTA
[9]   CONTINUOUS EVOLUTIONARY PROGRAMMING - ANALYSIS AND EXPERIMENTS [J].
FOGEL, GB ;
FOGEL, DB .
CYBERNETICS AND SYSTEMS, 1995, 26 (01) :79-90
[10]  
Fogel L., 1966, Artificial intelligence through simulated evolution