Long-term prognostic value of the serial changes of CT-derived fractional flow reserve and perivascular fat attenuation index

被引:21
作者
Dai, Xu [1 ]
Hou, Yang [2 ]
Tang, Chunxiang [3 ]
Lu, Zhigang [4 ]
Shen, Chengxing [4 ]
Zhang, Longjiang [3 ]
Zhang, Jiayin [5 ]
机构
[1] Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Inst Diagnost & Intervent Radiol, 600 Yishan Rd, Shanghai 200233, Peoples R China
[2] China Med Univ, Dept Radiol, Shengjing Hosp, Shenyang, Peoples R China
[3] Nanjing Univ, Jinling Hosp, Dept Med Imaging, Med Sch, 305 East Zhongshan Rd, Nanjing 210002, Peoples R China
[4] Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Dept Cardiol, Shanghai, Peoples R China
[5] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Radiol, Sch Med, Shanghai, Peoples R China
关键词
Coronary artery disease (CAD); fractional flow reserve (FFR); fat attenuation index (FAI); computed tomography (CT); prognosis; COMPUTED TOMOGRAPHIC ANGIOGRAPHY; CORONARY; PLAQUES;
D O I
10.21037/qims-21-424
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: To investigate the serial changes of computed tomography (CT) fractional flow reserve (CT-FFR) and fat attenuation index (FAI), and explore their relationships with long-term clinical outcomes. Methods: Consecutive symptomatic patients with an intermediate pretest probability of coronary artery disease 1-4 were prospectively enrolled if coronary CT angiography (CCTA) revealed at least 1 lesion with 30-70% stenosis on major epicardial arteries. Follow-up CCTA was performed at 1 to 1.5-year intervals. All patients were further followed up after the second CCTA until September 2019. The Coronary Artery Disease-Reporting and Data System (CAD-RADS) grade, high-risk plaque features, lesion-specific CT-FFR, and FAI were measured for prognosis analysis. Results: A total of 263 patients were included in the analysis, and 38 major adverse cardiac events (MACEs) occurred. In the MACE group, the lesion-specific CT-FFR decreased significantly at the follow-up CCTA [0.80 (0.74-0.90) versus 0.85 (0.76-0.93); P=0.01], whereas the FAI did not notably increase (-70.4 +/- 8.9 versus -71.3 +/- 7.1 HU; P=0.436). In the non-MACE group, lesion-specific CT-FFR increased markedly [0.91 (0.84-0.95) versus 0.90 (0.82-0.94); P<0.001], while the FAI decreased substantially (-74.0 +/- 10.8 versus -72.4 +/- 11.5 HU; P=0.004). Decreased CT-FFR (adjusted overall hazard ratio =2.455; P=0.023) and increased FAI (adjusted hazard ratio =2.956; P=0.002) were the strongest independent predictors of MACEs. Serial changes of CT-FFR and FAI provided incremental prognostic value (Concordance statistic =0.716; P=0.003; over conventional clinical and imaging parameters (Concordance statistic =0.762; P=0.004). Conclusions: Decreased CT-FFR and increased FAI at follow-up CCTA were the 2 strongest predictors of MACEs. Serial changes of CT-FFR and FAI provided incremental prognostic value over conventional clinical and imaging parameters for risk stratification. In addition, decreased CT-FFR provided incremental predictive value for MACEs from 15 months after second CCTA, while increased FAI added prognostic value from the second CCTA onwards.
引用
收藏
页码:752 / +
页数:18
相关论文
共 21 条
[1]   Detecting human coronary inflammation by imaging perivascular fat [J].
Antonopoulos, Alexios S. ;
Sanna, Fabio ;
Sabharwal, Nikant ;
Thomas, Sheena ;
Oikonomou, Evangelos K. ;
Herdman, Laura ;
Margaritis, Marios ;
Shirodaria, Cheerag ;
Kampoli, Anna-Maria ;
Akoumianakis, Ioannis ;
Petrou, Mario ;
Sayeed, Rana ;
Krasopoulos, George ;
Psarros, Constantinos ;
Ciccone, Patricia ;
Brophy, Carl M. ;
Digby, Janet ;
Kelion, Andrew ;
Uberoi, Raman ;
Anthony, Suzan ;
Alexopoulos, Nikolaos ;
Tousoulis, Dimitris ;
Achenbach, Stephan ;
Neubauer, Stefan ;
Channon, Keith M. ;
Antoniades, Charalambos .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (398)
[2]   Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium [J].
Coenen, Adriaan ;
Kim, Young-Hak ;
Kruk, Mariusz ;
Tesche, Christian ;
De Geer, Jakob ;
Kurata, Akira ;
Lubbers, Marisa L. ;
Daemen, Joost ;
Itu, Lucian ;
Rapaka, Saikiran ;
Sharma, Puneet ;
Schwemmer, Chris ;
Persson, Anders ;
Schoepf, U. Joseph ;
Kepka, Cezary ;
Yang, Dong Hyun ;
Nieman, Koen .
CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (06)
[3]   CAD-RADS™ Coronary Artery Disease - Reporting and Data System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology [J].
Cury, Ricardo C. ;
Abbara, Suhny ;
Achenbach, Stephan ;
Agatston, Arthur ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Dill, Karin E. ;
Jacobs, Jill E. ;
Maroules, Christopher D. ;
Rubin, Geoffrey D. ;
Rybicki, Frank J. ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Stillman, Arthur E. ;
White, Charles S. ;
Woodard, Pamela K. ;
Leipsic, Jonathon A. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (04) :269-281
[4]   Serial change of perivascular fat attenuation index after statin treatment: Insights from a coronary CT angiography follow-up study [J].
Dai, Xu ;
Yu, Lihua ;
Lu, Zhigang ;
Shen, Chengxing ;
Tao, Xinwei ;
Zhang, Jiayin .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2020, 319 :144-149
[5]   Impact of Coronary Computerized Tomography Angiography-Derived Plaque Quantification and Machine-Learning Computerized Tomography Fractional Flow Reserve on Adverse Cardiac Outcome [J].
Doeberitz, Philipp L. von Knebel ;
De Cecco, Carlo N. ;
Schoepf, U. Joseph ;
Albrecht, Moritz H. ;
van Assen, Marly ;
De Santis, Domenico ;
Gaskins, Jeffrey ;
Martin, Simon ;
Bauer, Maximilian J. ;
Ebersberger, Ullrich ;
Giovagnoli, Dante A. ;
Varga-Szemes, Akos ;
Bayer, Richard R., II ;
Schoenberg, Stefan O. ;
Tesche, Christian .
AMERICAN JOURNAL OF CARDIOLOGY, 2019, 124 (09) :1340-1348
[6]   Machine learning-based CT fractional flow reserve assessment in acute chest pain: first experience [J].
Eberhard, Matthias ;
Nadarevic, Tin ;
Cousin, Andrej ;
von Spiczak, Jochen ;
Hinzpeter, Ricarda ;
Euler, Andre ;
Morsbach, Fabian ;
Manka, Robert ;
Keller, Dagmar, I ;
Alkadhi, Hatem .
CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2020, 10 (04) :820-830
[7]   Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis [J].
Grant, Ryan W. ;
Stephens, Jacqueline M. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2015, 309 (03) :E205-E213
[8]   A machine-learning approach for computation of fractional flow reserve from coronary computed tomography [J].
Itu, Lucian ;
Rapaka, Saikiran ;
Passerini, Tiziano ;
Georgescu, Bogdan ;
Schwemmer, Chris ;
Schoebinger, Max ;
Flohr, Thomas ;
Sharma, Puneet ;
Comaniciu, Dorin .
JOURNAL OF APPLIED PHYSIOLOGY, 2016, 121 (01) :42-52
[9]   Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics [J].
Lee, Joo Myung ;
Choi, Gilwoo ;
Koo, Bon-Kwon ;
Hwang, Doyeon ;
Park, Jonghanne ;
Zhang, Jinlong ;
Kim, Kyung-Jin ;
Tong, Yaliang ;
Kim, Hyun Jin ;
Grady, Leo ;
Doh, Joon-Hyung ;
Nam, Chang-Wook ;
Shin, Eun-Seok ;
Cho, Young-Seok ;
Choi, Su-Yeon ;
Chun, Eun Ju ;
Choi, Jin-Ho ;
Norgaard, Bjarne L. ;
Christiansen, Evald H. ;
Niemen, Koen ;
Otake, Hiromasa ;
Penicka, Martin ;
de Bruyne, Bernard ;
Kubo, Takashi ;
Akasaka, Takashi ;
Narula, Jagat ;
Douglas, Pamela S. ;
Taylor, Charles A. ;
Kim, Hyo-Soo .
JACC-CARDIOVASCULAR IMAGING, 2019, 12 (06) :1032-1043
[10]   Towards reference values of pericoronary adipose tissue attenuation: impact of coronary artery and tube voltage in coronary computed tomography angiography [J].
Ma, Runlei ;
Ties, Daan ;
van Assen, Marly ;
Pelgrim, Gert Jan ;
Sidorenkov, Grigory ;
van Ooijen, Peter M. A. ;
van der Harst, Pim ;
van Dijk, Randy ;
Vliegenthart, Rozemarijn .
EUROPEAN RADIOLOGY, 2020, 30 (12) :6838-6846