Multi-class retinal fluid joint segmentation based on cascaded convolutional neural networks

被引:1
|
作者
Tang, Wei [1 ]
Ye, Yanqing [1 ]
Chen, Xinjian [1 ,2 ]
Shi, Fei [1 ]
Xiang, Dehui [1 ]
Chen, Zhongyue [1 ]
Zhu, Weifang [1 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, MIPAV Lab, Suzhou 215006, Jiangsu, Peoples R China
[2] Soochow Univ, State Key Lab Radiat Med & Protect, Suzhou 215006, Jiangsu, Peoples R China
基金
国家重点研发计划;
关键词
optical coherence tomography; convolutional neural network; medical image segmentation; DETACHMENT SEGMENTATION; SUBRETINAL FLUID; MACULAR EDEMA; SD-OCT; QUANTIFICATION; LAYER;
D O I
10.1088/1361-6560/ac7378
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Retinal fluid mainly includes intra-retinal fluid (IRF), sub-retinal fluid (SRF) and pigment epithelial detachment (PED), whose accurate segmentation in optical coherence tomography (OCT) image is of great importance to the diagnosis and treatment of the relative fundus diseases. Approach. In this paper, a novel two-stage multi-class retinal fluid joint segmentation framework based on cascaded convolutional neural networks is proposed. In the pre-segmentation stage, a U-shape encoder-decoder network is adopted to acquire the retinal mask and generate a retinal relative distance map, which can provide the spatial prior information for the next fluid segmentation. In the fluid segmentation stage, an improved context attention and fusion network based on context shrinkage encode module and multi-scale and multi-category semantic supervision module (named as ICAF-Net) is proposed to jointly segment IRF, SRF and PED. Main results. the proposed segmentation framework was evaluated on the dataset of RETOUCH challenge. The average Dice similarity coefficient, intersection over union and accuracy (Acc) reach 76.39%, 64.03% and 99.32% respectively. Significance. The proposed framework can achieve good performance in the joint segmentation of multi-class fluid in retinal OCT images and outperforms some state-of-the-art segmentation networks.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Automatic Retinal Blood Vessel Segmentation Based on Multi-level Convolutional Neural Network
    Guo, Jinnan
    Ren, Shiwei
    Shi, Yueting
    Wang, Haoyu
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [22] On the Use of Convolutional Neural Networks and Augmented CSP Features for Multi-class Motor Imagery of EEG Signals Classification
    Yang, Huijuan
    Sakhavi, Siavash
    Ang, Kai Keng
    Guan, Cuntai
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 2620 - 2623
  • [23] Brain Tissue Segmentation Based on Convolutional Neural Networks
    Sun, Zeyu
    Zhang, Juhua
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [24] Multi-class railway complaints categorization using Neural Networks: RailNeural
    Gupta, Meenu
    Singh, Anubhav
    Jain, Rachna
    Saxena, Anmol
    Ahmed, Shakeel
    JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT, 2021, 20
  • [25] Multi-Class Plant Leaf Disease Detection Using a Deep Convolutional Neural Network
    Jadhav, Shriya
    Lal, Anisha M.
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEM MODELING AND DESIGN, 2022, 13 (01)
  • [26] Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation
    Budak, Umit
    Guo, Yanhui
    Tanyildizi, Erkan
    Sengur, Abdulkadir
    MEDICAL HYPOTHESES, 2020, 134
  • [27] Retinal Vessel Image Segmentation Based on Improved Convolutional Neural Network
    Wu Chenyue
    Yi Benshun
    Zhang Yungang
    Huang Song
    Feng Yu
    ACTA OPTICA SINICA, 2018, 38 (11)
  • [28] Attention-Based Multi-Scale Convolutional Neural Network (A plus MCNN) for Multi-Class Classification in Road Images
    Eslami, Elham
    Yun, Hae-Bum
    SENSORS, 2021, 21 (15)
  • [29] Multi-Scale and Multi-Branch Convolutional Neural Network for Retinal Image Segmentation
    Jiang, Yun
    Liu, Wenhuan
    Wu, Chao
    Yao, Huixiao
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 25
  • [30] A Deep Learning Framework Using Convolutional Neural Network for Multi-class Object Recognition
    Hayat, Shaukat
    She Kun
    Zuo Tengtao
    Yue Yu
    Tu, Tianyi
    Du, Yantong
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 194 - 198