Attention-augmented Spatio-Temporal Segmentation for Land Cover Mapping

被引:7
|
作者
Ghosh, Rahul [1 ]
Ravirathinam, Praveen [1 ]
Jia, Xiaowei [2 ]
Lin, Chenxi [1 ]
Jin, Zhenong [1 ]
Kumar, Vipin [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
[2] Univ Pittsburgh, Pittsburgh, PA USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2021年
基金
美国国家科学基金会;
关键词
Remote Sensing; Spatio-temporal data; Semantic Segmentation;
D O I
10.1109/BigData52589.2021.9671974
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The availability of massive earth observing satellite data provides huge opportunities for land use and land cover mapping. However, such mapping effort is challenging due to the existence of various land cover classes, noisy data, and the lack of proper labels. Also, each land cover class typically has its own unique temporal pattern and can be identified only during certain periods. In this article, we introduce a novel architecture that incorporates the UNet structure with Bidirectional LSTM and Attention mechanism to jointly exploit the spatial and temporal nature of satellite data and to better identify the unique temporal patterns of each land cover class. We compare our method with other state-of-the-art methods both quantitatively and qualitatively on two real-world datasets which involve multiple land cover classes. We also visualise the attention weights to study its effectiveness in mitigating noise and in identifying discriminative time periods of different classes. The code and dataset used in this work are made publicly available for reproducibility.
引用
收藏
页码:1399 / 1408
页数:10
相关论文
共 50 条
  • [1] Mapping land cover changes with landsat imagery and spatio-temporal geostatistics
    Boucher, A
    Seto, K
    Journel, A
    Geostatistics Banff 2004, Vols 1 and 2, 2005, 14 : 809 - 818
  • [2] Real-time Attention-Augmented Spatio-Temporal Networks for Video-based Driver Activity Recognition
    Saleh, Khaled
    Mihaita, Adriana-Simona
    Yu, Kun
    Chen, Fang
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 1579 - 1585
  • [3] A Spatio-Temporal Pixel-Swapping Algorithm for Subpixel Land Cover Mapping
    Xu, Yong
    Huang, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (02) : 474 - 478
  • [4] Spatio-temporal Attention Network for Video Instance Segmentation
    Liu, Xiaoyu
    Ren, Haibing
    Ye, Tingmeng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 725 - 727
  • [5] Spatio-temporal segmentation
    Swain, C
    Puri, A
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1233 - 1236
  • [6] Spatio-temporal Data Association for Object-augmented Mapping
    Felipe D. B. de Oliveira
    Marcondes R. da Silva
    Aluizio F. R. Araújo
    Journal of Intelligent & Robotic Systems, 2021, 103
  • [7] Spatio-temporal Data Association for Object-augmented Mapping
    de Oliveira, Felipe D. B.
    da Silva Jr, Marcondes R.
    Araujo, Aluizio F. R.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2021, 103 (01)
  • [8] Spatio-Temporal-Spectral Collaborative Learning for Spatio-Temporal Fusion with Land Cover Changes
    Meng, Xiangchao
    Liu, Qiang
    Shao, Feng
    Li, Shutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Extracting the spatio-temporal linkages between land use/land cover and water quality parameters using spatio-temporal weighted regression
    Karimipour, Farid
    Madadi, Arash
    Bashough, Mohammad Hosein
    WATER QUALITY RESEARCH JOURNAL OF CANADA, 2018, 53 (04): : 205 - 218
  • [10] ASSESSING SPATIO-TEMPORAL DYNAMICS OF PRINCIPAL LAND COVER PROCESSES IN TURKEY
    Dikmen, Ali Cagatay
    Kusek, Gursel
    Gul, Ali
    FRESENIUS ENVIRONMENTAL BULLETIN, 2016, 25 (06): : 1799 - 1810