Steady-state diffusion-weighted imaging: theory, acquisition and analysis

被引:39
|
作者
McNab, Jennifer A. [1 ]
Miller, Karla L. [1 ]
机构
[1] Univ Oxford, Ctr Funct MRI Brain FMRIB, Oxford, England
关键词
diffusion-weighted imaging; steady-state; SSFP; brain; white matter; INTRAVOXEL INCOHERENT MOTIONS; FREE PRECESSION; HUMAN-BRAIN; NAVIGATOR ECHOES; MRI; RARE; SENSITIVITY; POSTMORTEM; PHASE; T-1;
D O I
10.1002/nbm.1509
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Steady-state diffusion-weighted imaging (DWI) has long been recognized to offer potential benefits over conventional spin-echo methods. This family of pulse sequences is highly efficient and compatible with three-dimensional acquisitions, which could enable high-resolution, low-distortion images. However, the same properties that lead to its efficiency make steady-state imaging highly susceptible to motion and create a complicated signal with dependence on T-1, T-2 and flip angle. Recent developments in gradient hardware, motion-mitigation techniques and signal analysis offer potential solutions to these problems, reviving interest in steady-state DWI. This review offers a description of steady-state DWI signal formation and provides an overview of the current methods for steady-state DWI acquisition and analysis. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:781 / 793
页数:13
相关论文
共 50 条
  • [21] A framework for optimizing the acquisition protocol multishell diffusion-weighted imaging for multimodel assessment
    Ciceri, Tommaso
    De Luca, Alberto
    Agarwal, Nivedita
    Arrigoni, Filippo
    Peruzzo, Denis
    NMR IN BIOMEDICINE, 2024, 37 (08)
  • [22] Diffusion-weighted imaging and diffusion tensor imaging in preoperative diagnostics
    Reith, W.
    RADIOLOGE, 2015, 55 (09): : 775 - 781
  • [23] How to perform diffusion-weighted imaging
    Bydder, GM
    Rutherford, MA
    Hajnal, JV
    CHILDS NERVOUS SYSTEM, 2001, 17 (4-5) : 195 - 201
  • [24] Diffusion-weighted imaging in prostate cancer
    Tamada, Tsutomu
    Ueda, Yu
    Ueno, Yoshiko
    Kojima, Yuichi
    Kido, Ayumu
    Yamamoto, Akira
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (04) : 533 - 547
  • [25] How to perform diffusion-weighted imaging
    G. M. Bydder
    M. A. Rutherford
    J. V. Hajnal
    Child's Nervous System, 2001, 17 : 195 - 201
  • [26] Diffusion-weighted MR imaging of the brain
    Naggara, O.
    Letourneau-Guillon, L.
    Mellerio, C.
    Belair, M.
    Pruvo, J.-P.
    Leclerc, X.
    Meder, J.-F.
    Oppenheim, C.
    JOURNAL DE RADIOLOGIE, 2010, 91 (03): : 329 - 351
  • [27] Diffusion-Weighted Imaging of Ocular Melanoma
    Erb-Eigner, Katharina
    Willerding, Gregor
    Taupitz, Matthias
    Hamm, Bernd
    Asbach, Patrick
    INVESTIGATIVE RADIOLOGY, 2013, 48 (10) : 702 - 707
  • [28] Diffusion-weighted MR imaging of the kidney
    Roy, C.
    Matau, A.
    Bierry, C.
    Bazille, G.
    JOURNAL DE RADIOLOGIE, 2010, 91 (03): : 408 - 420
  • [29] dti: Beyond the Gaussian Model in Diffusion-Weighted Imaging
    Polzehl, Joerg
    Tabelow, Karsten
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 44 (12): : 1 - 26
  • [30] ADC changes in schizophrenia: a diffusion-weighted imaging study
    Nenadic, Igor
    Wagner, Gerd
    Guellmar, Daniel
    Schachtzabel, Claudia
    von Consbruch, Katrin
    Koehler, Sabine
    Koch, Kathrin
    Roebel, Martin
    Schultz, C. Christoph
    Reichenbach, Juergen R.
    Sauer, Heinrich
    Schloesser, Ralf G. M.
    EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE, 2011, 261 (03) : 213 - 216