Odd elasticity realized by piezoelectric material with linear feedback

被引:9
作者
Cheng, Wen [1 ]
Hu, Gengkai [1 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
odd elasticity; piezoelectricity; feedback; Rayleigh wave; unidirectional invisibility;
D O I
10.1007/s11433-021-1756-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The systems exhibiting sustainable external energy exchange are abundant, e.g., biological organisms' reaction to external stimuli while maintaining a constant energy exchange with the surrounding. In a linear mechanical system exhibiting an external energy gain or release, the recently proposed odd elasticity theory can characterize the overall stress and strain response. However, realizing the required odd elasticity is still challenging. In this work, we discovered that the smart materials with designed feedbacks can achieve this odd elasticity, thereby providing a practical platform to analyze the phenomenon related to this novel elasticity theory. We also demonstrated this idea by designing a non-reciprocal Rayleigh wave via odd elasticity and the equivalent piezoelectricity with linear feedback. The underpinned electric energy scenario was also examined. Our work establishes a method to easily realize the materials with odd elastic behaviors and explore the rich phenomena related to non-Hermitian systems.
引用
收藏
页数:10
相关论文
共 34 条
  • [1] Allen D.H., 2014, MECH SHAPED MODERN W, DOI [10.1007/978-3-319-01701-3, DOI 10.1007/978-3-319-01701-3]
  • [2] Odd viscosity
    Avron, JE
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (3-4) : 543 - 557
  • [3] Barber JR., 1992, ELASTICITY, P117, DOI [10.1007/978-94-011-2454-6, DOI 10.1007/978-94-011-2454-6]
  • [4] Non-reciprocal robotic metamaterials
    Brandenbourger, Martin
    Locsin, Xander
    Lerner, Edan
    Coulais, Corentin
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Achieving control of in-plane elastic waves
    Brun, M.
    Guenneau, S.
    Movchan, A. B.
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (06)
  • [6] A facile method to realize perfectly matched layers for elastic waves
    Chang, Zheng
    Guo, Dengke
    Feng, Xi-Qiao
    Hu, Gengkai
    [J]. WAVE MOTION, 2014, 51 (07) : 1170 - 1178
  • [7] El-Ganainy R, 2018, NAT PHYS, V14, P11, DOI [10.1038/NPHYS4323, 10.1038/nphys4323]
  • [8] Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces
    Fleury, Romain
    Sounas, Dimitrios L.
    Alu, Andrea
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (02)
  • [9] A new identity for the surface-impedance matrix and its application to the determination of surface-wave speeds
    Fu, YB
    Mielke, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2026): : 2523 - 2543
  • [10] The 2020 motile active matter roadmap
    Gompper, Gerhard
    Winkler, Roland G.
    Speck, Thomas
    Solon, Alexandre
    Nardini, Cesare
    Peruani, Fernando
    Loewen, Hartmut
    Golestanian, Ramin
    Kaupp, U. Benjamin
    Alvarez, Luis
    Kiorboe, Thomas
    Lauga, Eric
    Poon, Wilson C. K.
    DeSimone, Antonio
    Muinos-Landin, Santiago
    Fischer, Alexander
    Soeker, Nicola A.
    Cichos, Frank
    Kapral, Raymond
    Gaspard, Pierre
    Ripoll, Marisol
    Sagues, Francesc
    Doostmohammadi, Amin
    Yeomans, Julia M.
    Aranson, Igor S.
    Bechinger, Clemens
    Stark, Holger
    Hemelrijk, Charlotte K.
    Nedelec, Francois J.
    Sarkar, Trinish
    Aryaksama, Thibault
    Lacroix, Mathilde
    Duclos, Guillaume
    Yashunsky, Victor
    Silberzan, Pascal
    Arroyo, Marino
    Kale, Sohan
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (19)