Multiplier Hermitian structures on Kahler manifolds

被引:25
作者
Mabuchi, T [1 ]
机构
[1] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
D O I
10.1017/S0027763000008540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to make a systematic study of a special type of conformally Kahler manifolds, called multiplier Hermitian manifolds, which we often encounter in the study of Hamiltonian holomorphic group actions on Kahler manifolds. In particular, we obtain a multiplier Hermitian analogue of Myers' Theorem on diameter bounds with an application (see [M5]) to the uniquness up to biholomorphisms of the "Kiihler-Einstein metrics" in the sense of [M1] on a given Fano manifold with nonvanishing Futaki character.
引用
收藏
页码:73 / 115
页数:43
相关论文
共 24 条
[1]  
[Anonymous], 1987, DMV SEMINAR
[4]  
Bando S., 1987, Adv. Stud. Pure Math., V10, P11
[5]  
BOURGUIGNON JP, 1907, ASTERISQUE, V58
[6]  
FUTAKI A, 1988, LECT NOTES MATH, V1314, P1
[7]   BILINEAR-FORMS AND EXTREMAL KAHLER VECTOR-FIELDS ASSOCIATED WITH KAHLER CLASSES [J].
FUTAKI, A ;
MABUCHI, T .
MATHEMATISCHE ANNALEN, 1995, 301 (02) :199-210
[8]  
KOBAYASHI S, 1972, ERG MATH, V70
[9]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[10]  
Lichnerowicz A., 1958, TRAVAUX RECHERCHES M, VIII