Enlarged integral inequalities through recent fractional generalized operators

被引:13
作者
Hyder, Abd-Allah [1 ,2 ]
Barakat, M. A. [3 ,4 ]
Fathallah, Ashraf [5 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[2] Al Azhar Univ, Fac Engn, Dept Engn Math & Phys, Cairo 11371, Egypt
[3] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
[4] Univ Tabuk, Coll Al Wajh, Dept Math, Tabuk 71491, Saudi Arabia
[5] Misr Int Univ, Fac Engn, Dept Math, Cairo 11828, Egypt
关键词
Generalized fractional operators; Integral inequalities; Hermite-Hadamard inequalities; Minkowski inequalities;
D O I
10.1186/s13660-022-02831-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to proving some new fractional inequalities via recent generalized fractional operators. These inequalities are in the Hermite-Hadamard and Minkowski settings. Many previously documented inequalities may clearly be deduced as specific examples from our findings. Moreover, we give some comparative remarks to show the advantage and novelty of the obtained results.
引用
收藏
页数:12
相关论文
共 32 条
[1]   New Modified Conformable Fractional Integral Inequalities of Hermite-Hadamard Type with Applications [J].
Abdeljawad, Thabet ;
Mohammed, Pshtiwan Othman ;
Kashuri, Artion .
JOURNAL OF FUNCTION SPACES, 2020, 2020
[2]   Hermite-Hadamard integral inequalities on coordinated convex functions in quantum calculus [J].
Alqudah, Manar A. ;
Kashuri, Artion ;
Mohammed, Pshtiwan Othman ;
Abdeljawad, Thabet ;
Raees, Muhammad ;
Anwar, Matloob ;
Hamed, Y. S. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[3]  
Bougoffa L., 2006, JIPAM. J. Inequal. Pure Appl. Math., V7
[4]   ON MINKOWSKI AND HERMITE-HADAMARD INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRATION [J].
Dahmani, Zoubir .
ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (01) :51-58
[5]   Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels [J].
Fernandez, Arran ;
Mohammed, Pshtiwan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) :8414-8431
[6]   Sharp integral inequalities of the Hermite-Hadamard type [J].
Guessab, A ;
Schmeisser, G .
JOURNAL OF APPROXIMATION THEORY, 2002, 115 (02) :260-288
[7]  
Habib S, 2018, J INEQUAL SPEC FUNCT, V9, P53
[8]  
Hadamard J., 1893, J. Math. Pures Appl., V9, P171
[9]  
Huang C. J., 2019, Aust. J. Math. Anal. Appl, V16, P1
[10]   Further Integral Inequalities through Some Generalized Fractional Integral Operators [J].
Hyder, Abd-Allah ;
Barakat, Mohamed A. ;
Fathallah, Ashraf ;
Cesarano, Clemente .
FRACTAL AND FRACTIONAL, 2021, 5 (04)