Phase space Feynman path integrals of parabolic type on the torus as analysis on path space

被引:0
作者
Kumano-go, Naoto [1 ]
机构
[1] Kogakuin Univ, Div Liberal Arts, 2665-1 Nakano Machi, Hachioji, Tokyo 1920015, Japan
关键词
Path integral; Pseudo-differential operator; Parabolic equation; CONVERGENCE; TERM;
D O I
10.1007/s11868-022-00474-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide general sets of functionals for which parabolic phase space Feynman path integrals on the torus T-d = (R/2 pi Z)(d) have amathematically rigorous meaning. More exactly, for each functional belonging to each set, the time slicing approximation of the phase space path integral converges uniformly on compact subsets of T-d x Z(d) to some function of the ending point of position paths and the starting point of momentum paths. Each set of functionals is closed under addition, multiplication, translation, invertible integer linear transformation, and functional differentiation. As a result, we can create a large number of path integrable functionals. Though we must exercise caution when using phase space path integrals, several properties comparable to those of conventional integrals are applicable.
引用
收藏
页数:47
相关论文
共 37 条
[21]  
Kumano-go N., 1996, J MATH SCI-U TOKYO, V3, P57
[22]   Phase space Feynman path integrals via piecewise bicharacteristic paths and their semiclassical approximations [J].
Kumano-go, Naoto ;
Fujiwara, Daisuke .
BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (04) :313-357
[23]   Phase space path integral on torus for the fundamental solution of higher-order parabolic equations [J].
Kumano-go, Naoto ;
Uchida, Keiya .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (03) :1059-1083
[24]   Phase space Feynman path integrals of parabolic type with smooth functional derivatives [J].
Kumano-go, Naoto .
BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 153 :1-27
[25]   Phase space Feynman path integrals of higher order parabolic type with general functional as integrand [J].
Kumano-go, Naoto ;
Murthy, A. S. Vasudeva .
BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (05) :495-537
[26]   Phase space Feynman path integrals with smooth functional derivatives by time slicing approximation [J].
Kumano-go, Naoto .
BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (08) :936-987
[27]  
Mazzucchi, 2009, MATH FEYNMAN PATH IN, DOI [10.1142/7104, DOI 10.1142/7104]
[29]   On the Pointwise Convergence of the Integral Kernels in the Feynman-Trotter Formula [J].
Nicola, Fabio ;
Trapasso, S. Ivan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) :2277-2299
[30]   Approximation of Feynman path integrals with non-smooth potentials [J].
Nicola, Fabio ;
Trapasso, S. Ivan .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (10)