Mesoporous Encapsulated Chiral Nanogold for Use in Enantioselective Reactions

被引:146
作者
Zhou, Ya [1 ,2 ,3 ]
Sun, Hanjun [1 ,2 ,4 ]
Xu, Hongcheng [5 ]
Matysiak, Silvina [5 ,6 ]
Ren, Jinsong [1 ,2 ]
Qu, Xiaogang [1 ,2 ]
机构
[1] Chinese Acad Sci, Lab Chem Biol, Changchun Inst Appl Chem, Changchun 130022, Jilin, Peoples R China
[2] Chinese Acad Sci, State Key Lab Rare Earth Resource Utilizat, Changchun Inst Appl Chem, Changchun 130022, Jilin, Peoples R China
[3] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[5] Univ Maryland, Biophys Program, Inst Phys Sci & Technol, College Pk, MD USA
[6] Univ Maryland, Fischell Dept Engn, College Pk, MD 20742 USA
关键词
cysteine; DOPA; enantioselectivity; molecular dynamics simulations; nanozymes; GOLD NANOPARTICLES; ARTIFICIAL ENZYMES; NANOZYME; CYSTEINE; NANOMATERIALS; OXIDASE;
D O I
10.1002/anie.201811118
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although various nanomaterials have been designed for biocatalysis, few of them can accelerate chemical reactions with high selectivity and stereocontrol, which remains them from being perfect alternatives to nature enzymes. Herein, inspired by the natural enzymes, an enantioselective nanomaterial has been constructed, with gold nanoparticles (AuNPs) as active centers, chiral cysteine (Cys) as selectors for chiral recognition, and expanded mesoporous silica (EMSN) as a skeleton of the artificial enzyme. In the oxidation of chiral 3,4-dihydroxy-phenylalanine (DOPA), the nanozyme with D-Cys shows preference to L-DOPA while the artificial enzyme with L-Cys shows preference to D-DOPA. Subsequent calculation of apparent steady-state kinetic parameters and activation energies together with molecular dynamics (MD) simulations showed that the different affinity precipitated by hydrogen bonding formation between chiral Cys and DOPA is the origin of chiral selectivity.
引用
收藏
页码:16791 / 16795
页数:5
相关论文
共 40 条
[1]   V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity [J].
Andre, Rute ;
Natalio, Filipe ;
Humanes, Madalena ;
Leppin, Jana ;
Heinze, Katja ;
Wever, Ron ;
Schroeder, H. -C. ;
Mueller, Werner E. G. ;
Tremel, Wolfgang .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (03) :501-509
[2]   Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions [J].
Bormann, Sebastian ;
Baraibar, Alvaro Gomez ;
Ni, Yan ;
Holtmann, Dirk ;
Hollmann, Frank .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (04) :2038-2052
[3]   Engineering the third wave of biocatalysis [J].
Bornscheuer, U. T. ;
Huisman, G. W. ;
Kazlauskas, R. J. ;
Lutz, S. ;
Moore, J. C. ;
Robins, K. .
NATURE, 2012, 485 (7397) :185-194
[4]   BIOMIMETIC CHEMISTRY AND ARTIFICIAL ENZYMES - CATALYSIS BY DESIGN [J].
BRESLOW, R .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :146-153
[5]   Chiral Nanozymes-Gold Nanoparticle-Based Transphosphorylation Catalysts Capable of Enantiomeric Discrimination [J].
Chen, Jack L-Y. ;
Pezzato, Cristian ;
Scrimin, Paolo ;
Prins, Leonard J. .
CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (21) :7028-7032
[6]   MODIFICATION OF PARKINSONISM - CHRONIC TREATMENT WITH L-DOPA [J].
COTZIAS, GC ;
PAPAVASI.PS ;
GELLENE, R .
NEW ENGLAND JOURNAL OF MEDICINE, 1969, 280 (07) :337-&
[7]   Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site [J].
Fan, Kelong ;
Wang, Hui ;
Xi, Juqun ;
Liu, Qi ;
Meng, Xiangqin ;
Duan, Demin ;
Gao, Lizeng ;
Yan, Xiyun .
CHEMICAL COMMUNICATIONS, 2017, 53 (02) :424-427
[8]   Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J].
Gao, Lizeng ;
Zhuang, Jie ;
Nie, Leng ;
Zhang, Jinbin ;
Zhang, Yu ;
Gu, Ning ;
Wang, Taihong ;
Feng, Jing ;
Yang, Dongling ;
Perrett, Sarah ;
Yan, Xiyun .
NATURE NANOTECHNOLOGY, 2007, 2 (09) :577-583
[9]   How enzymes work: Analysis by modern rate theory and computer simulations [J].
Garcia-Viloca, M ;
Gao, J ;
Karplus, M ;
Truhlar, DG .
SCIENCE, 2004, 303 (5655) :186-195
[10]  
Ghosh S., 2018, Angew. Chem, V130, P4600, DOI [10.1002/ange.201800681, DOI 10.1002/ANGE.201800681]