The peak algebra of the symmetric group

被引:23
作者
Nyman, KL
机构
关键词
peaks; Solomon's descent algebra; quasisymmetric functions;
D O I
10.1023/A:1025000905826
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The peak set of a permutation sigma is the set {i : sigma(i - 1) < σ(i) > sigma(i + 1)}. The group algebra of the symmetric group S-n admits a subalgebra in which elements are sums of permutations with a common descent set. In this paper we show the existence of a subalgebra of this descent algebra in which elements are sums of permutations sharing a common peak set. To prove the existence of this peak algebra we use the theory of enriched (P, gamma)- partitions and the algebra of quasisymmetric peak functions studied by Stembridge (Trans. Amer. Math. Soc. 349 (1997) 763 - 788).
引用
收藏
页码:309 / 322
页数:14
相关论文
共 14 条
  • [1] [Anonymous], ENUMERATIVE COMBINAT
  • [2] [Anonymous], 1972, MEMOIRS AM MATH SOC
  • [3] Bayer D., 1992, Ann. Appl. Probab, V2, P294, DOI [10.1214/aoap/1177005705, DOI 10.1214/AOAP/1177005705]
  • [4] HOMOMORPHISMS BETWEEN SOLOMON DESCENT ALGEBRAS
    BERGERON, F
    GARSIA, A
    REUTENAUER, C
    [J]. JOURNAL OF ALGEBRA, 1992, 150 (02) : 503 - 519
  • [5] ORTHOGONAL IDEMPOTENTS IN THE DESCENT ALGEBRA OF B(N) AND APPLICATIONS
    BERGERON, F
    BERGERON, N
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 79 (02) : 109 - 129
  • [6] Shifted quasi-symmetric functions and the Hopf algebra of peak functions
    Bergeron, N
    Mykytiuk, S
    Sottile, F
    van Willigenburg, S
    [J]. DISCRETE MATHEMATICS, 2002, 246 (1-3) : 57 - 66
  • [7] CELLINI P, 1995, J ALGEBRA, V175, P990, DOI 10.1006/jabr.1995.1223
  • [8] A DECOMPOSITION OF SOLOMON DESCENT ALGEBRA
    GARSIA, AM
    REUTENAUER, C
    [J]. ADVANCES IN MATHEMATICS, 1989, 77 (02) : 189 - 262
  • [9] Gessel I., 1984, Contemporary Mathematics, V34, P289
  • [10] OPERATIONS ON THE CYCLIC HOMOLOGY OF COMMUTATIVE ALGEBRAS
    LODAY, JL
    [J]. INVENTIONES MATHEMATICAE, 1989, 96 (01) : 205 - 230