Developing methods of measuring multidimensional poverty and improving the accuracy of poverty identification have been hot topics in international poverty research for decades. They are also key issues for improving the quality and effectiveness of rural poverty reduction programs in China. So far, selection and integration of poverty indicators remains the main difficult for measurement of multidimensional poverty. Guided by the sustainable livelihoods framework developed in the UK by the Department for International Development (DFID), an index system and an integration method for geographical identification of multidimensional poverty were established, and they were further used to carry out a county-level identification of poverty in rural China. Additionally, comparisons were made of the identification results with counties having single-dimension income poverty in rural areas and poor counties designated by the Chinese central government. The results showed that a total of 655 counties, with 141 million rural residents, were identified as multidimensionally poor. They are concentrated and conjointly distributed geographically, and evil natural conditions are their common features. In comparison to the income poor and the designated poor counties, the multidimensionally poor counties were not only worse in single-dimensional and composite scores, but also having multiple disadvantages and deprivations. By identifying the disadvantage and deprived dimensions, the measurement of multidimensional poverty should be very helpful for each county to work out and implement antipoverty programs accordingly, and it would make contribution to improve the sustainability of poverty reduction. Hopefully, this research may also shed light on multidimensional poverty measurement for other developing countries. (C) 2016 Elsevier Ltd. All rights reserved.
机构:
Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Peng, Wenjia
Robinson, Brian E.
论文数: 0引用数: 0
h-index: 0
机构:
McGill Univ, Dept Geog, Montreal, PQ H3A 0B9, CanadaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Robinson, Brian E.
Zheng, Hua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Zheng, Hua
Li, Cong
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Econ & Finance, Xian 710061, Shaanxi, Peoples R ChinaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Li, Cong
Wang, Fengchun
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Univ Water Resources & Elect Engn, Dept Hydraul Engn, Cangzhou 061001, Peoples R ChinaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
Wang, Fengchun
Li, Ruonan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
机构:
Xidian Univ, Sch Econ & Management, Xian, Peoples R ChinaXidian Univ, Sch Econ & Management, Xian, Peoples R China
Wang, Lei
Li, Cong
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Econ & Finance, Xian, Peoples R China
Xi An Jiao Tong Univ, Sch Econ & Finance, 28 Xianning West Rd, Xian, Shaanxi, Peoples R ChinaXidian Univ, Sch Econ & Management, Xian, Peoples R China
Li, Cong
Zhu, Nong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Quebec, INRS, UCS, Montreal, PQ, CanadaXidian Univ, Sch Econ & Management, Xian, Peoples R China