Polynomial cubic splines with tension properties

被引:23
作者
Costantini, P. [1 ]
Kaklis, P. D. [2 ]
Manni, C. [3 ]
机构
[1] Univ Siena, Dipartimento Sci Matemat & Informat, I-53100 Siena, Italy
[2] Natl Tech Univ Athens, Ship Design Lab, Heroon Polytechneiou 9, GR-15773 Athens, Greece
[3] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
Polynomial splines; Rational functions; Subdivision schemes; Shape preservation; Tension property;
D O I
10.1016/j.cagd.2010.06.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we present a new class of spline functions with tension properties. These splines are composed by polynomial cubic pieces and therefore are conformal to the standard. NURBS based CAD/CAM systems. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:592 / 610
页数:19
相关论文
共 17 条
[1]   On a class of weak Tchebycheff systems [J].
Costantini, P ;
Lyche, T ;
Manni, C .
NUMERISCHE MATHEMATIK, 2005, 101 (02) :333-354
[2]   Curve and surface construction using variable degree polynomial splines [J].
Costantini, P .
COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (05) :419-446
[3]  
Costantini P, 2006, REND MAT APPL, V26, P327
[4]   A geometric approach for Hermite subdivision [J].
Costantini, Paolo ;
Manni, Carla .
NUMERISCHE MATHEMATIK, 2010, 115 (03) :333-369
[5]   Curve and surface construction using Hermite subdivision schemes [J].
Costantini, Paolo ;
Manni, Carla .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (07) :1660-1673
[6]   SHAPE PRESERVING PIECEWISE RATIONAL INTERPOLATION [J].
DELBOURGO, R ;
GREGORY, JA .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (04) :967-976
[8]   Blossoming beyond extended Chebyshev spaces [J].
Goodman, T .
JOURNAL OF APPROXIMATION THEORY, 2001, 109 (01) :48-81
[9]  
Hoschek J., 1993, Fundamentals of computer aided geometric design
[10]   CONVEXITY-PRESERVING INTERPOLATORY PARAMETRIC SPLINES OF NONUNIFORM POLYNOMIAL DEGREE [J].
KAKLIS, PD ;
SAPIDIS, NS .
COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (01) :1-26