Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition

被引:6
作者
Goncalves, M. L. N. [1 ]
Oliveira, P. R. [2 ]
机构
[1] IME UFG, Goiania, Go, Brazil
[2] Univ Fed Rio de Janeiro, COPPE Sistemas, Rio De Janeiro, Brazil
关键词
Gauss-Newton method; majorant condition; semi-local convergence; non-linear systems of equations; CONSTANT RANK DERIVATIVES; LOCAL CONVERGENCE; BANACH-SPACE; PRINCIPLE;
D O I
10.1080/02331934.2013.778854
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the Gauss-Newton method for a special class of systems of non-linear equation. On the hypothesis that the derivative of the function under consideration satisfies a majorant condition, semi-local convergence analysis is presented. In this analysis, the conditions and proof of convergence are simplified by using a simple majorant condition to define regions where the Gauss-Newton sequence is 'well behaved'. Moreover, special cases of the general theory are presented as applications.
引用
收藏
页码:577 / 594
页数:18
相关论文
共 50 条
  • [41] A derivative-free Gauss-Newton method
    Cartis, Coralia
    Roberts, Lindon
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (04) : 631 - 674
  • [42] ON SMOOTHNESS AND INVARIANCE PROPERTIES OF THE GAUSS-NEWTON METHOD
    BEYN, WJ
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (5-6) : 503 - 514
  • [43] Coupling topological gradient and Gauss-Newton method
    Fehrenbach, Jerome
    Masmoudi, Mohamed
    [J]. IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS: STATUS AND PERSPECTIVES, 2006, 137 : 595 - +
  • [44] A Stochastic iteratively regularized Gauss-Newton method
    Bergou, Elhoucine
    Chada, Neil K.
    Diouane, Youssef
    [J]. INVERSE PROBLEMS, 2025, 41 (01)
  • [45] EXTENDING THE APPLICABILITY OF GAUSS-NEWTON METHOD FOR CONVEX COMPOSITE OPTIMIZATION ON RIEMANNIAN MANIFOLDS USING RESTRICTED CONVERGENCE DOMAINS
    Argyros, Ioannis K.
    George, Santhosh
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [46] Iteratively Regularized Gauss-Newton Method for Operator Equations with Normally Solvable Derivative at the Solution
    Bakushinskii, A. B.
    Kokurin, M. Yu.
    [J]. RUSSIAN MATHEMATICS, 2016, 60 (08) : 1 - 8
  • [47] Convergence analysis of the Gauss-Newton method for convex inclusion and convex-composite optimization problems
    Li, C.
    Ng, K. F.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 469 - 485
  • [48] Local convergence analysis of proximal Gauss-Newton method for penalized nonlinear least squares problems
    Argyros, Ioannis K.
    Alberto Magrenan, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 241 : 401 - 408
  • [49] Gauss-Newton Method for DEM Co-registration
    Wang, Kunlun
    Zhang, Tonggang
    [J]. INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808
  • [50] Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions
    Argyros, Ioannis K.
    Hilout, Said
    [J]. NUMERICAL ALGORITHMS, 2011, 58 (01) : 23 - 52