Gauss-Newton method;
majorant condition;
semi-local convergence;
non-linear systems of equations;
CONSTANT RANK DERIVATIVES;
LOCAL CONVERGENCE;
BANACH-SPACE;
PRINCIPLE;
D O I:
10.1080/02331934.2013.778854
中图分类号:
C93 [管理学];
O22 [运筹学];
学科分类号:
070105 ;
12 ;
1201 ;
1202 ;
120202 ;
摘要:
In this paper, we study the Gauss-Newton method for a special class of systems of non-linear equation. On the hypothesis that the derivative of the function under consideration satisfies a majorant condition, semi-local convergence analysis is presented. In this analysis, the conditions and proof of convergence are simplified by using a simple majorant condition to define regions where the Gauss-Newton sequence is 'well behaved'. Moreover, special cases of the general theory are presented as applications.
机构:
Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Peoples R ChinaFujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
Ma, Changfeng
Jiang, Lihua
论文数: 0引用数: 0
h-index: 0
机构:Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
Jiang, Lihua
Wang, Desheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeFujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
机构:
Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Peoples R ChinaFujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
Ma, Changfeng
Jiang, Lihua
论文数: 0引用数: 0
h-index: 0
机构:Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
Jiang, Lihua
Wang, Desheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeFujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China