Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition

被引:6
|
作者
Goncalves, M. L. N. [1 ]
Oliveira, P. R. [2 ]
机构
[1] IME UFG, Goiania, Go, Brazil
[2] Univ Fed Rio de Janeiro, COPPE Sistemas, Rio De Janeiro, Brazil
关键词
Gauss-Newton method; majorant condition; semi-local convergence; non-linear systems of equations; CONSTANT RANK DERIVATIVES; LOCAL CONVERGENCE; BANACH-SPACE; PRINCIPLE;
D O I
10.1080/02331934.2013.778854
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the Gauss-Newton method for a special class of systems of non-linear equation. On the hypothesis that the derivative of the function under consideration satisfies a majorant condition, semi-local convergence analysis is presented. In this analysis, the conditions and proof of convergence are simplified by using a simple majorant condition to define regions where the Gauss-Newton sequence is 'well behaved'. Moreover, special cases of the general theory are presented as applications.
引用
收藏
页码:577 / 594
页数:18
相关论文
共 50 条
  • [21] On the Gauss-Newton method
    Argyros I.K.
    Hilout S.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 537 - 550
  • [22] Convergence analysis of a proximal Gauss-Newton method
    Salzo, Saverio
    Villa, Silvia
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (02) : 557 - 589
  • [23] Convergence analysis of a proximal Gauss-Newton method
    Saverio Salzo
    Silvia Villa
    Computational Optimization and Applications, 2012, 53 : 557 - 589
  • [24] Adaptive Gauss-Newton Method for Solving Systems of Nonlinear Equations
    Yudin, N. E.
    DOKLADY MATHEMATICS, 2021, 104 (02) : 293 - 296
  • [25] On the complexity of extending the convergence domain of Newton's method under the weak majorant condition
    Argyros, Ioannis K.
    George, Santhosh
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (03): : 781 - 795
  • [26] ON THE SEMILOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD USING RECURRENT FUNCTIONS
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 307 - 319
  • [27] On convergence of the Gauss-Newton method for convex composite optimization
    Li, C
    Wang, XH
    MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 349 - 356
  • [28] The Gauss-Newton method for finding singular solutions to systems of nonlinear equations
    Yerina M.Yu.
    Izmailov A.F.
    Computational Mathematics and Mathematical Physics, 2007, 47 (5) : 748 - 759
  • [29] ON THE GAUSS-NEWTON METHOD FOR CONVEX OPTIMIZATION USING RESTRICTED CONVERGENCE DOMAINS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [30] An Analysis on Local Convergence of Inexact Newton-Gauss Method for Solving Singular Systems of Equations
    Zhou, Fangqin
    SCIENTIFIC WORLD JOURNAL, 2014,