Thermal conductivity modeling of circular-wire nanocomposites

被引:10
作者
Hsieh, Tse-Yang [1 ]
Yang, Jaw-Yen [2 ]
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan
[2] Natl Taiwan Univ, Ctr Quantum Sci & Engn, Taipei 106, Taiwan
关键词
THERMOELECTRIC-MATERIALS; SILICON NANOWIRES; PHONON TRANSPORT; MONTE-CARLO; THIN-FILMS; SUPERLATTICES; POLARIZATION; DISPERSION; SIMULATION; DYNAMICS;
D O I
10.1063/1.3457230
中图分类号
O59 [应用物理学];
学科分类号
摘要
A phonon Boltzmann equation solver using multiblock-structured grid system is developed and applied to study transverse thermal transport in silicon-germanium circular-wire nanocomposite (silicon nanowires embedded in germanium host matrix). Past studies usually assume geometric simplification for the circular-wire nanocomposite, so the heat transfer is actually modeled in a square-wire nanocomposite. To demonstrate geometry effect, phonon transport in both the circular-wire and square-wire nanocomposites are investigated with various wire spacings, volume fractions, and dimensions. In ballistic phonon transport, due to the smoothness of circular shape, the circular wire imposes less thermal resistance than the square-wire. Nevertheless, in the geometric simplification, the wire spacing of the square-wire nanocomposite is larger than that of the circular-wire nanocomposite. The usual geometric simplification can overestimate the thermal conductivity of the circular-wire nanocomposite. The obtained results can provide essential information for the development of bulk-nanostructured thermoelectric devices. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3457230]
引用
收藏
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 2002, Cambridge Texts in Applied Mathematics, DOI [10.1017/CBO9780511791253, DOI 10.1017/CBO9780511791253]
[2]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[3]   Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures [J].
Chen, G .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1997, 119 (02) :220-229
[4]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973
[5]  
CHEN G, 2005, NANOSCLAE ENERGY TRA
[6]   Monte Carlo simulation of silicon nanowire thermal conductivity [J].
Chen, YF ;
Li, DY ;
Lukes, JR ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (10) :1129-1137
[7]   Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires [J].
Dames, C ;
Chen, G .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (02) :682-693
[8]   Atomistic Simulations of Heat Transport in Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[9]   New Composite Thermoelectric Materials for Energy Harvesting Applications [J].
Dresselhaus, M. S. ;
Chen, G. ;
Ren, Z. F. ;
Dresselhaus, G. ;
Henry, A. ;
Fleurial, J. -P. .
JOM, 2009, 61 (04) :86-90
[10]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053